Metamath Proof Explorer


Theorem tgcgrsub

Description: Removing identical parts from the end of a line segment preserves congruence. Theorem 4.3 of Schwabhauser p. 35. (Contributed by Thierry Arnoux, 3-Apr-2019)

Ref Expression
Hypotheses tgbtwncgr.p P=BaseG
tgbtwncgr.m -˙=distG
tgbtwncgr.i I=ItvG
tgbtwncgr.g φG𝒢Tarski
tgbtwncgr.a φAP
tgbtwncgr.b φBP
tgbtwncgr.c φCP
tgbtwncgr.d φDP
tgcgrsub.e φEP
tgcgrsub.f φFP
tgcgrsub.1 φBAIC
tgcgrsub.2 φEDIF
tgcgrsub.3 φA-˙C=D-˙F
tgcgrsub.4 φB-˙C=E-˙F
Assertion tgcgrsub φA-˙B=D-˙E

Proof

Step Hyp Ref Expression
1 tgbtwncgr.p P=BaseG
2 tgbtwncgr.m -˙=distG
3 tgbtwncgr.i I=ItvG
4 tgbtwncgr.g φG𝒢Tarski
5 tgbtwncgr.a φAP
6 tgbtwncgr.b φBP
7 tgbtwncgr.c φCP
8 tgbtwncgr.d φDP
9 tgcgrsub.e φEP
10 tgcgrsub.f φFP
11 tgcgrsub.1 φBAIC
12 tgcgrsub.2 φEDIF
13 tgcgrsub.3 φA-˙C=D-˙F
14 tgcgrsub.4 φB-˙C=E-˙F
15 1 2 3 4 5 8 tgcgrtriv φA-˙A=D-˙D
16 1 2 3 4 5 7 8 10 13 tgcgrcomlr φC-˙A=F-˙D
17 1 2 3 4 5 6 7 5 8 9 10 8 11 12 13 14 15 16 tgifscgr φB-˙A=E-˙D
18 1 2 3 4 6 5 9 8 17 tgcgrcomlr φA-˙B=D-˙E