| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mirval.p |
|
| 2 |
|
mirval.d |
|
| 3 |
|
mirval.i |
|
| 4 |
|
mirval.l |
|
| 5 |
|
mirval.s |
|
| 6 |
|
mirval.g |
|
| 7 |
|
colmid.m |
|
| 8 |
|
colmid.a |
|
| 9 |
|
colmid.b |
|
| 10 |
|
colmid.x |
|
| 11 |
|
colmid.c |
|
| 12 |
|
colmid.d |
|
| 13 |
|
animorr |
|
| 14 |
6
|
ad2antrr |
|
| 15 |
10
|
ad2antrr |
|
| 16 |
8
|
ad2antrr |
|
| 17 |
9
|
ad2antrr |
|
| 18 |
12
|
ad2antrr |
|
| 19 |
18
|
eqcomd |
|
| 20 |
|
simpr |
|
| 21 |
1 2 3 14 16 15 17 20
|
tgbtwncom |
|
| 22 |
1 2 3 4 5 14 15 7 16 17 19 21
|
ismir |
|
| 23 |
22
|
orcd |
|
| 24 |
6
|
adantr |
|
| 25 |
9
|
adantr |
|
| 26 |
8
|
adantr |
|
| 27 |
10
|
adantr |
|
| 28 |
|
simpr |
|
| 29 |
1 2 3 24 27 26 25 28
|
tgbtwncom |
|
| 30 |
1 2 3 24 26 27
|
tgbtwntriv1 |
|
| 31 |
1 2 3 6 10 8 10 9 12
|
tgcgrcomlr |
|
| 32 |
31
|
adantr |
|
| 33 |
32
|
eqcomd |
|
| 34 |
|
eqidd |
|
| 35 |
1 2 3 24 25 26 27 26 26 27 29 30 33 34
|
tgcgrsub |
|
| 36 |
1 2 3 24 25 26 26 35
|
axtgcgrid |
|
| 37 |
36
|
eqcomd |
|
| 38 |
37
|
adantlr |
|
| 39 |
38
|
olcd |
|
| 40 |
6
|
adantr |
|
| 41 |
8
|
adantr |
|
| 42 |
9
|
adantr |
|
| 43 |
10
|
adantr |
|
| 44 |
|
simpr |
|
| 45 |
1 2 3 40 42 43
|
tgbtwntriv1 |
|
| 46 |
31
|
adantr |
|
| 47 |
|
eqidd |
|
| 48 |
1 2 3 40 41 42 43 42 42 43 44 45 46 47
|
tgcgrsub |
|
| 49 |
1 2 3 40 41 42 42 48
|
axtgcgrid |
|
| 50 |
49
|
adantlr |
|
| 51 |
50
|
olcd |
|
| 52 |
|
df-ne |
|
| 53 |
11
|
orcomd |
|
| 54 |
53
|
orcanai |
|
| 55 |
52 54
|
sylan2b |
|
| 56 |
6
|
adantr |
|
| 57 |
8
|
adantr |
|
| 58 |
9
|
adantr |
|
| 59 |
|
simpr |
|
| 60 |
10
|
adantr |
|
| 61 |
1 4 3 56 57 58 59 60
|
tgellng |
|
| 62 |
55 61
|
mpbid |
|
| 63 |
23 39 51 62
|
mpjao3dan |
|
| 64 |
13 63
|
pm2.61dane |
|