| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mirval.p |  |-  P = ( Base ` G ) | 
						
							| 2 |  | mirval.d |  |-  .- = ( dist ` G ) | 
						
							| 3 |  | mirval.i |  |-  I = ( Itv ` G ) | 
						
							| 4 |  | mirval.l |  |-  L = ( LineG ` G ) | 
						
							| 5 |  | mirval.s |  |-  S = ( pInvG ` G ) | 
						
							| 6 |  | mirval.g |  |-  ( ph -> G e. TarskiG ) | 
						
							| 7 |  | miduniq2.a |  |-  ( ph -> A e. P ) | 
						
							| 8 |  | miduniq2.b |  |-  ( ph -> B e. P ) | 
						
							| 9 |  | miduniq2.x |  |-  ( ph -> X e. P ) | 
						
							| 10 |  | miduniq2.e |  |-  ( ph -> ( ( S ` A ) ` ( ( S ` B ) ` X ) ) = ( ( S ` B ) ` ( ( S ` A ) ` X ) ) ) | 
						
							| 11 |  | eqid |  |-  ( S ` B ) = ( S ` B ) | 
						
							| 12 | 1 2 3 4 5 6 8 11 | mirf |  |-  ( ph -> ( S ` B ) : P --> P ) | 
						
							| 13 | 12 7 | ffvelcdmd |  |-  ( ph -> ( ( S ` B ) ` A ) e. P ) | 
						
							| 14 |  | eqid |  |-  ( ( S ` B ) ` A ) = ( ( S ` B ) ` A ) | 
						
							| 15 |  | eqid |  |-  ( ( S ` B ) ` ( ( S ` B ) ` X ) ) = ( ( S ` B ) ` ( ( S ` B ) ` X ) ) | 
						
							| 16 |  | eqid |  |-  ( ( S ` B ) ` ( ( S ` B ) ` ( ( S ` A ) ` X ) ) ) = ( ( S ` B ) ` ( ( S ` B ) ` ( ( S ` A ) ` X ) ) ) | 
						
							| 17 | 12 9 | ffvelcdmd |  |-  ( ph -> ( ( S ` B ) ` X ) e. P ) | 
						
							| 18 |  | eqid |  |-  ( S ` A ) = ( S ` A ) | 
						
							| 19 | 1 2 3 4 5 6 7 18 9 | mircl |  |-  ( ph -> ( ( S ` A ) ` X ) e. P ) | 
						
							| 20 | 12 19 | ffvelcdmd |  |-  ( ph -> ( ( S ` B ) ` ( ( S ` A ) ` X ) ) e. P ) | 
						
							| 21 | 1 2 3 4 5 6 11 14 15 16 8 7 17 20 10 | mirauto |  |-  ( ph -> ( ( S ` ( ( S ` B ) ` A ) ) ` ( ( S ` B ) ` ( ( S ` B ) ` X ) ) ) = ( ( S ` B ) ` ( ( S ` B ) ` ( ( S ` A ) ` X ) ) ) ) | 
						
							| 22 | 1 2 3 4 5 6 8 11 9 | mirmir |  |-  ( ph -> ( ( S ` B ) ` ( ( S ` B ) ` X ) ) = X ) | 
						
							| 23 | 22 | fveq2d |  |-  ( ph -> ( ( S ` ( ( S ` B ) ` A ) ) ` ( ( S ` B ) ` ( ( S ` B ) ` X ) ) ) = ( ( S ` ( ( S ` B ) ` A ) ) ` X ) ) | 
						
							| 24 | 1 2 3 4 5 6 8 11 19 | mirmir |  |-  ( ph -> ( ( S ` B ) ` ( ( S ` B ) ` ( ( S ` A ) ` X ) ) ) = ( ( S ` A ) ` X ) ) | 
						
							| 25 | 21 23 24 | 3eqtr3d |  |-  ( ph -> ( ( S ` ( ( S ` B ) ` A ) ) ` X ) = ( ( S ` A ) ` X ) ) | 
						
							| 26 | 1 2 3 4 5 6 13 7 9 25 | miduniq1 |  |-  ( ph -> ( ( S ` B ) ` A ) = A ) | 
						
							| 27 | 1 2 3 4 5 6 8 11 7 | mirinv |  |-  ( ph -> ( ( ( S ` B ) ` A ) = A <-> B = A ) ) | 
						
							| 28 | 26 27 | mpbid |  |-  ( ph -> B = A ) | 
						
							| 29 | 28 | eqcomd |  |-  ( ph -> A = B ) |