| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mirval.p |  |-  P = ( Base ` G ) | 
						
							| 2 |  | mirval.d |  |-  .- = ( dist ` G ) | 
						
							| 3 |  | mirval.i |  |-  I = ( Itv ` G ) | 
						
							| 4 |  | mirval.l |  |-  L = ( LineG ` G ) | 
						
							| 5 |  | mirval.s |  |-  S = ( pInvG ` G ) | 
						
							| 6 |  | mirval.g |  |-  ( ph -> G e. TarskiG ) | 
						
							| 7 |  | mirhl.m |  |-  M = ( S ` A ) | 
						
							| 8 |  | mirhl.k |  |-  K = ( hlG ` G ) | 
						
							| 9 |  | mirhl.a |  |-  ( ph -> A e. P ) | 
						
							| 10 |  | mirhl.x |  |-  ( ph -> X e. P ) | 
						
							| 11 |  | mirhl.y |  |-  ( ph -> Y e. P ) | 
						
							| 12 |  | mirhl.z |  |-  ( ph -> Z e. P ) | 
						
							| 13 |  | mirhl2.1 |  |-  ( ph -> X =/= A ) | 
						
							| 14 |  | mirhl2.2 |  |-  ( ph -> Y =/= A ) | 
						
							| 15 |  | mirhl2.3 |  |-  ( ph -> A e. ( X I ( M ` Y ) ) ) | 
						
							| 16 | 1 2 3 4 5 6 9 7 11 | mircl |  |-  ( ph -> ( M ` Y ) e. P ) | 
						
							| 17 | 1 2 3 4 5 6 9 7 11 14 | mirne |  |-  ( ph -> ( M ` Y ) =/= A ) | 
						
							| 18 | 1 2 3 6 10 9 16 15 | tgbtwncom |  |-  ( ph -> A e. ( ( M ` Y ) I X ) ) | 
						
							| 19 | 1 2 3 4 5 6 9 7 11 | mirbtwn |  |-  ( ph -> A e. ( ( M ` Y ) I Y ) ) | 
						
							| 20 | 1 3 6 16 9 10 11 17 18 19 | tgbtwnconn2 |  |-  ( ph -> ( X e. ( A I Y ) \/ Y e. ( A I X ) ) ) | 
						
							| 21 | 1 3 8 10 11 9 6 | ishlg |  |-  ( ph -> ( X ( K ` A ) Y <-> ( X =/= A /\ Y =/= A /\ ( X e. ( A I Y ) \/ Y e. ( A I X ) ) ) ) ) | 
						
							| 22 | 13 14 20 21 | mpbir3and |  |-  ( ph -> X ( K ` A ) Y ) |