Metamath Proof Explorer


Theorem mirhl2

Description: Deduce half-line relation from mirror point. (Contributed by Thierry Arnoux, 8-Aug-2020)

Ref Expression
Hypotheses mirval.p
|- P = ( Base ` G )
mirval.d
|- .- = ( dist ` G )
mirval.i
|- I = ( Itv ` G )
mirval.l
|- L = ( LineG ` G )
mirval.s
|- S = ( pInvG ` G )
mirval.g
|- ( ph -> G e. TarskiG )
mirhl.m
|- M = ( S ` A )
mirhl.k
|- K = ( hlG ` G )
mirhl.a
|- ( ph -> A e. P )
mirhl.x
|- ( ph -> X e. P )
mirhl.y
|- ( ph -> Y e. P )
mirhl.z
|- ( ph -> Z e. P )
mirhl2.1
|- ( ph -> X =/= A )
mirhl2.2
|- ( ph -> Y =/= A )
mirhl2.3
|- ( ph -> A e. ( X I ( M ` Y ) ) )
Assertion mirhl2
|- ( ph -> X ( K ` A ) Y )

Proof

Step Hyp Ref Expression
1 mirval.p
 |-  P = ( Base ` G )
2 mirval.d
 |-  .- = ( dist ` G )
3 mirval.i
 |-  I = ( Itv ` G )
4 mirval.l
 |-  L = ( LineG ` G )
5 mirval.s
 |-  S = ( pInvG ` G )
6 mirval.g
 |-  ( ph -> G e. TarskiG )
7 mirhl.m
 |-  M = ( S ` A )
8 mirhl.k
 |-  K = ( hlG ` G )
9 mirhl.a
 |-  ( ph -> A e. P )
10 mirhl.x
 |-  ( ph -> X e. P )
11 mirhl.y
 |-  ( ph -> Y e. P )
12 mirhl.z
 |-  ( ph -> Z e. P )
13 mirhl2.1
 |-  ( ph -> X =/= A )
14 mirhl2.2
 |-  ( ph -> Y =/= A )
15 mirhl2.3
 |-  ( ph -> A e. ( X I ( M ` Y ) ) )
16 1 2 3 4 5 6 9 7 11 mircl
 |-  ( ph -> ( M ` Y ) e. P )
17 1 2 3 4 5 6 9 7 11 14 mirne
 |-  ( ph -> ( M ` Y ) =/= A )
18 1 2 3 6 10 9 16 15 tgbtwncom
 |-  ( ph -> A e. ( ( M ` Y ) I X ) )
19 1 2 3 4 5 6 9 7 11 mirbtwn
 |-  ( ph -> A e. ( ( M ` Y ) I Y ) )
20 1 3 6 16 9 10 11 17 18 19 tgbtwnconn2
 |-  ( ph -> ( X e. ( A I Y ) \/ Y e. ( A I X ) ) )
21 1 3 8 10 11 9 6 ishlg
 |-  ( ph -> ( X ( K ` A ) Y <-> ( X =/= A /\ Y =/= A /\ ( X e. ( A I Y ) \/ Y e. ( A I X ) ) ) ) )
22 13 14 20 21 mpbir3and
 |-  ( ph -> X ( K ` A ) Y )