| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hpgid.p | ⊢ 𝑃  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | hpgid.i | ⊢ 𝐼  =  ( Itv ‘ 𝐺 ) | 
						
							| 3 |  | hpgid.l | ⊢ 𝐿  =  ( LineG ‘ 𝐺 ) | 
						
							| 4 |  | hpgid.g | ⊢ ( 𝜑  →  𝐺  ∈  TarskiG ) | 
						
							| 5 |  | hpgid.d | ⊢ ( 𝜑  →  𝐷  ∈  ran  𝐿 ) | 
						
							| 6 |  | hpgid.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑃 ) | 
						
							| 7 |  | hpgid.o | ⊢ 𝑂  =  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  ( 𝑃  ∖  𝐷 )  ∧  𝑏  ∈  ( 𝑃  ∖  𝐷 ) )  ∧  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝑎 𝐼 𝑏 ) ) } | 
						
							| 8 |  | colopp.b | ⊢ ( 𝜑  →  𝐵  ∈  𝑃 ) | 
						
							| 9 |  | colopp.p | ⊢ ( 𝜑  →  𝐶  ∈  𝐷 ) | 
						
							| 10 |  | colopp.1 | ⊢ ( 𝜑  →  ( 𝐶  ∈  ( 𝐴 𝐿 𝐵 )  ∨  𝐴  =  𝐵 ) ) | 
						
							| 11 | 4 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ( ¬  𝐴  ∈  𝐷  ∧  ¬  𝐵  ∈  𝐷 ) )  ∧  𝑦  ∈  𝐷 )  ∧  𝑦  ∈  ( 𝐴 𝐼 𝐵 ) )  →  𝐺  ∈  TarskiG ) | 
						
							| 12 | 6 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ( ¬  𝐴  ∈  𝐷  ∧  ¬  𝐵  ∈  𝐷 ) )  ∧  𝑦  ∈  𝐷 )  ∧  𝑦  ∈  ( 𝐴 𝐼 𝐵 ) )  →  𝐴  ∈  𝑃 ) | 
						
							| 13 | 8 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ( ¬  𝐴  ∈  𝐷  ∧  ¬  𝐵  ∈  𝐷 ) )  ∧  𝑦  ∈  𝐷 )  ∧  𝑦  ∈  ( 𝐴 𝐼 𝐵 ) )  →  𝐵  ∈  𝑃 ) | 
						
							| 14 |  | eqid | ⊢ ( dist ‘ 𝐺 )  =  ( dist ‘ 𝐺 ) | 
						
							| 15 | 5 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ( ¬  𝐴  ∈  𝐷  ∧  ¬  𝐵  ∈  𝐷 ) )  ∧  𝑦  ∈  𝐷 )  ∧  𝑦  ∈  ( 𝐴 𝐼 𝐵 ) )  →  𝐷  ∈  ran  𝐿 ) | 
						
							| 16 |  | simpllr | ⊢ ( ( ( ( 𝜑  ∧  ( ¬  𝐴  ∈  𝐷  ∧  ¬  𝐵  ∈  𝐷 ) )  ∧  𝑦  ∈  𝐷 )  ∧  𝑦  ∈  ( 𝐴 𝐼 𝐵 ) )  →  ( ¬  𝐴  ∈  𝐷  ∧  ¬  𝐵  ∈  𝐷 ) ) | 
						
							| 17 |  | simplr | ⊢ ( ( ( ( 𝜑  ∧  ( ¬  𝐴  ∈  𝐷  ∧  ¬  𝐵  ∈  𝐷 ) )  ∧  𝑦  ∈  𝐷 )  ∧  𝑦  ∈  ( 𝐴 𝐼 𝐵 ) )  →  𝑦  ∈  𝐷 ) | 
						
							| 18 |  | eleq1w | ⊢ ( 𝑡  =  𝑦  →  ( 𝑡  ∈  ( 𝐴 𝐼 𝐵 )  ↔  𝑦  ∈  ( 𝐴 𝐼 𝐵 ) ) ) | 
						
							| 19 | 18 | adantl | ⊢ ( ( ( ( ( 𝜑  ∧  ( ¬  𝐴  ∈  𝐷  ∧  ¬  𝐵  ∈  𝐷 ) )  ∧  𝑦  ∈  𝐷 )  ∧  𝑦  ∈  ( 𝐴 𝐼 𝐵 ) )  ∧  𝑡  =  𝑦 )  →  ( 𝑡  ∈  ( 𝐴 𝐼 𝐵 )  ↔  𝑦  ∈  ( 𝐴 𝐼 𝐵 ) ) ) | 
						
							| 20 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  ( ¬  𝐴  ∈  𝐷  ∧  ¬  𝐵  ∈  𝐷 ) )  ∧  𝑦  ∈  𝐷 )  ∧  𝑦  ∈  ( 𝐴 𝐼 𝐵 ) )  →  𝑦  ∈  ( 𝐴 𝐼 𝐵 ) ) | 
						
							| 21 | 17 19 20 | rspcedvd | ⊢ ( ( ( ( 𝜑  ∧  ( ¬  𝐴  ∈  𝐷  ∧  ¬  𝐵  ∈  𝐷 ) )  ∧  𝑦  ∈  𝐷 )  ∧  𝑦  ∈  ( 𝐴 𝐼 𝐵 ) )  →  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝐴 𝐼 𝐵 ) ) | 
						
							| 22 | 1 14 2 7 6 8 | islnopp | ⊢ ( 𝜑  →  ( 𝐴 𝑂 𝐵  ↔  ( ( ¬  𝐴  ∈  𝐷  ∧  ¬  𝐵  ∈  𝐷 )  ∧  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝐴 𝐼 𝐵 ) ) ) ) | 
						
							| 23 | 22 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ( ¬  𝐴  ∈  𝐷  ∧  ¬  𝐵  ∈  𝐷 ) )  ∧  𝑦  ∈  𝐷 )  ∧  𝑦  ∈  ( 𝐴 𝐼 𝐵 ) )  →  ( 𝐴 𝑂 𝐵  ↔  ( ( ¬  𝐴  ∈  𝐷  ∧  ¬  𝐵  ∈  𝐷 )  ∧  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝐴 𝐼 𝐵 ) ) ) ) | 
						
							| 24 | 16 21 23 | mpbir2and | ⊢ ( ( ( ( 𝜑  ∧  ( ¬  𝐴  ∈  𝐷  ∧  ¬  𝐵  ∈  𝐷 ) )  ∧  𝑦  ∈  𝐷 )  ∧  𝑦  ∈  ( 𝐴 𝐼 𝐵 ) )  →  𝐴 𝑂 𝐵 ) | 
						
							| 25 | 1 14 2 7 3 15 11 12 13 24 | oppne3 | ⊢ ( ( ( ( 𝜑  ∧  ( ¬  𝐴  ∈  𝐷  ∧  ¬  𝐵  ∈  𝐷 ) )  ∧  𝑦  ∈  𝐷 )  ∧  𝑦  ∈  ( 𝐴 𝐼 𝐵 ) )  →  𝐴  ≠  𝐵 ) | 
						
							| 26 | 1 2 3 11 12 13 25 | tgelrnln | ⊢ ( ( ( ( 𝜑  ∧  ( ¬  𝐴  ∈  𝐷  ∧  ¬  𝐵  ∈  𝐷 ) )  ∧  𝑦  ∈  𝐷 )  ∧  𝑦  ∈  ( 𝐴 𝐼 𝐵 ) )  →  ( 𝐴 𝐿 𝐵 )  ∈  ran  𝐿 ) | 
						
							| 27 | 1 2 3 11 12 13 25 | tglinerflx1 | ⊢ ( ( ( ( 𝜑  ∧  ( ¬  𝐴  ∈  𝐷  ∧  ¬  𝐵  ∈  𝐷 ) )  ∧  𝑦  ∈  𝐷 )  ∧  𝑦  ∈  ( 𝐴 𝐼 𝐵 ) )  →  𝐴  ∈  ( 𝐴 𝐿 𝐵 ) ) | 
						
							| 28 | 16 | simpld | ⊢ ( ( ( ( 𝜑  ∧  ( ¬  𝐴  ∈  𝐷  ∧  ¬  𝐵  ∈  𝐷 ) )  ∧  𝑦  ∈  𝐷 )  ∧  𝑦  ∈  ( 𝐴 𝐼 𝐵 ) )  →  ¬  𝐴  ∈  𝐷 ) | 
						
							| 29 |  | nelne1 | ⊢ ( ( 𝐴  ∈  ( 𝐴 𝐿 𝐵 )  ∧  ¬  𝐴  ∈  𝐷 )  →  ( 𝐴 𝐿 𝐵 )  ≠  𝐷 ) | 
						
							| 30 | 27 28 29 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  ( ¬  𝐴  ∈  𝐷  ∧  ¬  𝐵  ∈  𝐷 ) )  ∧  𝑦  ∈  𝐷 )  ∧  𝑦  ∈  ( 𝐴 𝐼 𝐵 ) )  →  ( 𝐴 𝐿 𝐵 )  ≠  𝐷 ) | 
						
							| 31 | 25 | neneqd | ⊢ ( ( ( ( 𝜑  ∧  ( ¬  𝐴  ∈  𝐷  ∧  ¬  𝐵  ∈  𝐷 ) )  ∧  𝑦  ∈  𝐷 )  ∧  𝑦  ∈  ( 𝐴 𝐼 𝐵 ) )  →  ¬  𝐴  =  𝐵 ) | 
						
							| 32 | 10 | orcomd | ⊢ ( 𝜑  →  ( 𝐴  =  𝐵  ∨  𝐶  ∈  ( 𝐴 𝐿 𝐵 ) ) ) | 
						
							| 33 | 32 | ord | ⊢ ( 𝜑  →  ( ¬  𝐴  =  𝐵  →  𝐶  ∈  ( 𝐴 𝐿 𝐵 ) ) ) | 
						
							| 34 | 33 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ( ¬  𝐴  ∈  𝐷  ∧  ¬  𝐵  ∈  𝐷 ) )  ∧  𝑦  ∈  𝐷 )  ∧  𝑦  ∈  ( 𝐴 𝐼 𝐵 ) )  →  ( ¬  𝐴  =  𝐵  →  𝐶  ∈  ( 𝐴 𝐿 𝐵 ) ) ) | 
						
							| 35 | 31 34 | mpd | ⊢ ( ( ( ( 𝜑  ∧  ( ¬  𝐴  ∈  𝐷  ∧  ¬  𝐵  ∈  𝐷 ) )  ∧  𝑦  ∈  𝐷 )  ∧  𝑦  ∈  ( 𝐴 𝐼 𝐵 ) )  →  𝐶  ∈  ( 𝐴 𝐿 𝐵 ) ) | 
						
							| 36 | 9 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ( ¬  𝐴  ∈  𝐷  ∧  ¬  𝐵  ∈  𝐷 ) )  ∧  𝑦  ∈  𝐷 )  ∧  𝑦  ∈  ( 𝐴 𝐼 𝐵 ) )  →  𝐶  ∈  𝐷 ) | 
						
							| 37 | 35 36 | elind | ⊢ ( ( ( ( 𝜑  ∧  ( ¬  𝐴  ∈  𝐷  ∧  ¬  𝐵  ∈  𝐷 ) )  ∧  𝑦  ∈  𝐷 )  ∧  𝑦  ∈  ( 𝐴 𝐼 𝐵 ) )  →  𝐶  ∈  ( ( 𝐴 𝐿 𝐵 )  ∩  𝐷 ) ) | 
						
							| 38 | 1 3 2 11 15 17 | tglnpt | ⊢ ( ( ( ( 𝜑  ∧  ( ¬  𝐴  ∈  𝐷  ∧  ¬  𝐵  ∈  𝐷 ) )  ∧  𝑦  ∈  𝐷 )  ∧  𝑦  ∈  ( 𝐴 𝐼 𝐵 ) )  →  𝑦  ∈  𝑃 ) | 
						
							| 39 | 1 2 3 11 12 13 38 25 20 | btwnlng1 | ⊢ ( ( ( ( 𝜑  ∧  ( ¬  𝐴  ∈  𝐷  ∧  ¬  𝐵  ∈  𝐷 ) )  ∧  𝑦  ∈  𝐷 )  ∧  𝑦  ∈  ( 𝐴 𝐼 𝐵 ) )  →  𝑦  ∈  ( 𝐴 𝐿 𝐵 ) ) | 
						
							| 40 | 39 17 | elind | ⊢ ( ( ( ( 𝜑  ∧  ( ¬  𝐴  ∈  𝐷  ∧  ¬  𝐵  ∈  𝐷 ) )  ∧  𝑦  ∈  𝐷 )  ∧  𝑦  ∈  ( 𝐴 𝐼 𝐵 ) )  →  𝑦  ∈  ( ( 𝐴 𝐿 𝐵 )  ∩  𝐷 ) ) | 
						
							| 41 | 1 2 3 11 26 15 30 37 40 | tglineineq | ⊢ ( ( ( ( 𝜑  ∧  ( ¬  𝐴  ∈  𝐷  ∧  ¬  𝐵  ∈  𝐷 ) )  ∧  𝑦  ∈  𝐷 )  ∧  𝑦  ∈  ( 𝐴 𝐼 𝐵 ) )  →  𝐶  =  𝑦 ) | 
						
							| 42 | 41 20 | eqeltrd | ⊢ ( ( ( ( 𝜑  ∧  ( ¬  𝐴  ∈  𝐷  ∧  ¬  𝐵  ∈  𝐷 ) )  ∧  𝑦  ∈  𝐷 )  ∧  𝑦  ∈  ( 𝐴 𝐼 𝐵 ) )  →  𝐶  ∈  ( 𝐴 𝐼 𝐵 ) ) | 
						
							| 43 | 42 | adantllr | ⊢ ( ( ( ( ( 𝜑  ∧  ( ¬  𝐴  ∈  𝐷  ∧  ¬  𝐵  ∈  𝐷 ) )  ∧  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝐴 𝐼 𝐵 ) )  ∧  𝑦  ∈  𝐷 )  ∧  𝑦  ∈  ( 𝐴 𝐼 𝐵 ) )  →  𝐶  ∈  ( 𝐴 𝐼 𝐵 ) ) | 
						
							| 44 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ( ¬  𝐴  ∈  𝐷  ∧  ¬  𝐵  ∈  𝐷 ) )  ∧  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝐴 𝐼 𝐵 ) )  →  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝐴 𝐼 𝐵 ) ) | 
						
							| 45 | 18 | cbvrexvw | ⊢ ( ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝐴 𝐼 𝐵 )  ↔  ∃ 𝑦  ∈  𝐷 𝑦  ∈  ( 𝐴 𝐼 𝐵 ) ) | 
						
							| 46 | 44 45 | sylib | ⊢ ( ( ( 𝜑  ∧  ( ¬  𝐴  ∈  𝐷  ∧  ¬  𝐵  ∈  𝐷 ) )  ∧  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝐴 𝐼 𝐵 ) )  →  ∃ 𝑦  ∈  𝐷 𝑦  ∈  ( 𝐴 𝐼 𝐵 ) ) | 
						
							| 47 | 43 46 | r19.29a | ⊢ ( ( ( 𝜑  ∧  ( ¬  𝐴  ∈  𝐷  ∧  ¬  𝐵  ∈  𝐷 ) )  ∧  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝐴 𝐼 𝐵 ) )  →  𝐶  ∈  ( 𝐴 𝐼 𝐵 ) ) | 
						
							| 48 | 9 | adantr | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 𝐴 𝐼 𝐵 ) )  →  𝐶  ∈  𝐷 ) | 
						
							| 49 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝐶  ∈  ( 𝐴 𝐼 𝐵 ) )  ∧  𝑡  =  𝐶 )  →  𝑡  =  𝐶 ) | 
						
							| 50 | 49 | eleq1d | ⊢ ( ( ( 𝜑  ∧  𝐶  ∈  ( 𝐴 𝐼 𝐵 ) )  ∧  𝑡  =  𝐶 )  →  ( 𝑡  ∈  ( 𝐴 𝐼 𝐵 )  ↔  𝐶  ∈  ( 𝐴 𝐼 𝐵 ) ) ) | 
						
							| 51 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 𝐴 𝐼 𝐵 ) )  →  𝐶  ∈  ( 𝐴 𝐼 𝐵 ) ) | 
						
							| 52 | 48 50 51 | rspcedvd | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 𝐴 𝐼 𝐵 ) )  →  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝐴 𝐼 𝐵 ) ) | 
						
							| 53 | 52 | adantlr | ⊢ ( ( ( 𝜑  ∧  ( ¬  𝐴  ∈  𝐷  ∧  ¬  𝐵  ∈  𝐷 ) )  ∧  𝐶  ∈  ( 𝐴 𝐼 𝐵 ) )  →  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝐴 𝐼 𝐵 ) ) | 
						
							| 54 | 47 53 | impbida | ⊢ ( ( 𝜑  ∧  ( ¬  𝐴  ∈  𝐷  ∧  ¬  𝐵  ∈  𝐷 ) )  →  ( ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝐴 𝐼 𝐵 )  ↔  𝐶  ∈  ( 𝐴 𝐼 𝐵 ) ) ) | 
						
							| 55 | 54 | pm5.32da | ⊢ ( 𝜑  →  ( ( ( ¬  𝐴  ∈  𝐷  ∧  ¬  𝐵  ∈  𝐷 )  ∧  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝐴 𝐼 𝐵 ) )  ↔  ( ( ¬  𝐴  ∈  𝐷  ∧  ¬  𝐵  ∈  𝐷 )  ∧  𝐶  ∈  ( 𝐴 𝐼 𝐵 ) ) ) ) | 
						
							| 56 |  | 3anrot | ⊢ ( ( 𝐶  ∈  ( 𝐴 𝐼 𝐵 )  ∧  ¬  𝐴  ∈  𝐷  ∧  ¬  𝐵  ∈  𝐷 )  ↔  ( ¬  𝐴  ∈  𝐷  ∧  ¬  𝐵  ∈  𝐷  ∧  𝐶  ∈  ( 𝐴 𝐼 𝐵 ) ) ) | 
						
							| 57 |  | df-3an | ⊢ ( ( ¬  𝐴  ∈  𝐷  ∧  ¬  𝐵  ∈  𝐷  ∧  𝐶  ∈  ( 𝐴 𝐼 𝐵 ) )  ↔  ( ( ¬  𝐴  ∈  𝐷  ∧  ¬  𝐵  ∈  𝐷 )  ∧  𝐶  ∈  ( 𝐴 𝐼 𝐵 ) ) ) | 
						
							| 58 | 56 57 | bitri | ⊢ ( ( 𝐶  ∈  ( 𝐴 𝐼 𝐵 )  ∧  ¬  𝐴  ∈  𝐷  ∧  ¬  𝐵  ∈  𝐷 )  ↔  ( ( ¬  𝐴  ∈  𝐷  ∧  ¬  𝐵  ∈  𝐷 )  ∧  𝐶  ∈  ( 𝐴 𝐼 𝐵 ) ) ) | 
						
							| 59 | 58 | a1i | ⊢ ( 𝜑  →  ( ( 𝐶  ∈  ( 𝐴 𝐼 𝐵 )  ∧  ¬  𝐴  ∈  𝐷  ∧  ¬  𝐵  ∈  𝐷 )  ↔  ( ( ¬  𝐴  ∈  𝐷  ∧  ¬  𝐵  ∈  𝐷 )  ∧  𝐶  ∈  ( 𝐴 𝐼 𝐵 ) ) ) ) | 
						
							| 60 | 55 22 59 | 3bitr4d | ⊢ ( 𝜑  →  ( 𝐴 𝑂 𝐵  ↔  ( 𝐶  ∈  ( 𝐴 𝐼 𝐵 )  ∧  ¬  𝐴  ∈  𝐷  ∧  ¬  𝐵  ∈  𝐷 ) ) ) |