| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hpg.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
| 2 |
|
hpg.d |
⊢ − = ( dist ‘ 𝐺 ) |
| 3 |
|
hpg.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
| 4 |
|
hpg.o |
⊢ 𝑂 = { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑏 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑏 ) ) } |
| 5 |
|
opphl.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
| 6 |
|
opphl.d |
⊢ ( 𝜑 → 𝐷 ∈ ran 𝐿 ) |
| 7 |
|
opphl.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
| 8 |
|
oppcom.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
| 9 |
|
oppcom.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
| 10 |
|
oppcom.o |
⊢ ( 𝜑 → 𝐴 𝑂 𝐵 ) |
| 11 |
1 2 3 4 5 6 7 8 9 10
|
oppne1 |
⊢ ( 𝜑 → ¬ 𝐴 ∈ 𝐷 ) |
| 12 |
7
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 = 𝐵 ) ∧ 𝑡 ∈ 𝐷 ) ∧ 𝑡 ∈ ( 𝐴 𝐼 𝐵 ) ) → 𝐺 ∈ TarskiG ) |
| 13 |
8
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 = 𝐵 ) ∧ 𝑡 ∈ 𝐷 ) ∧ 𝑡 ∈ ( 𝐴 𝐼 𝐵 ) ) → 𝐴 ∈ 𝑃 ) |
| 14 |
6
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 = 𝐵 ) ∧ 𝑡 ∈ 𝐷 ) ∧ 𝑡 ∈ ( 𝐴 𝐼 𝐵 ) ) → 𝐷 ∈ ran 𝐿 ) |
| 15 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 = 𝐵 ) ∧ 𝑡 ∈ 𝐷 ) ∧ 𝑡 ∈ ( 𝐴 𝐼 𝐵 ) ) → 𝑡 ∈ 𝐷 ) |
| 16 |
1 5 3 12 14 15
|
tglnpt |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 = 𝐵 ) ∧ 𝑡 ∈ 𝐷 ) ∧ 𝑡 ∈ ( 𝐴 𝐼 𝐵 ) ) → 𝑡 ∈ 𝑃 ) |
| 17 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 = 𝐵 ) ∧ 𝑡 ∈ 𝐷 ) ∧ 𝑡 ∈ ( 𝐴 𝐼 𝐵 ) ) → 𝑡 ∈ ( 𝐴 𝐼 𝐵 ) ) |
| 18 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 = 𝐵 ) ∧ 𝑡 ∈ 𝐷 ) ∧ 𝑡 ∈ ( 𝐴 𝐼 𝐵 ) ) → 𝐴 = 𝐵 ) |
| 19 |
18
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 = 𝐵 ) ∧ 𝑡 ∈ 𝐷 ) ∧ 𝑡 ∈ ( 𝐴 𝐼 𝐵 ) ) → ( 𝐴 𝐼 𝐴 ) = ( 𝐴 𝐼 𝐵 ) ) |
| 20 |
17 19
|
eleqtrrd |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 = 𝐵 ) ∧ 𝑡 ∈ 𝐷 ) ∧ 𝑡 ∈ ( 𝐴 𝐼 𝐵 ) ) → 𝑡 ∈ ( 𝐴 𝐼 𝐴 ) ) |
| 21 |
1 2 3 12 13 16 20
|
axtgbtwnid |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 = 𝐵 ) ∧ 𝑡 ∈ 𝐷 ) ∧ 𝑡 ∈ ( 𝐴 𝐼 𝐵 ) ) → 𝐴 = 𝑡 ) |
| 22 |
21 15
|
eqeltrd |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 = 𝐵 ) ∧ 𝑡 ∈ 𝐷 ) ∧ 𝑡 ∈ ( 𝐴 𝐼 𝐵 ) ) → 𝐴 ∈ 𝐷 ) |
| 23 |
1 2 3 4 8 9
|
islnopp |
⊢ ( 𝜑 → ( 𝐴 𝑂 𝐵 ↔ ( ( ¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷 ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝐴 𝐼 𝐵 ) ) ) ) |
| 24 |
10 23
|
mpbid |
⊢ ( 𝜑 → ( ( ¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷 ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝐴 𝐼 𝐵 ) ) ) |
| 25 |
24
|
simprd |
⊢ ( 𝜑 → ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝐴 𝐼 𝐵 ) ) |
| 26 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝐴 𝐼 𝐵 ) ) |
| 27 |
22 26
|
r19.29a |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → 𝐴 ∈ 𝐷 ) |
| 28 |
11 27
|
mtand |
⊢ ( 𝜑 → ¬ 𝐴 = 𝐵 ) |
| 29 |
28
|
neqned |
⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) |