| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hpg.p | ⊢ 𝑃  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | hpg.d | ⊢  −   =  ( dist ‘ 𝐺 ) | 
						
							| 3 |  | hpg.i | ⊢ 𝐼  =  ( Itv ‘ 𝐺 ) | 
						
							| 4 |  | hpg.o | ⊢ 𝑂  =  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  ( 𝑃  ∖  𝐷 )  ∧  𝑏  ∈  ( 𝑃  ∖  𝐷 ) )  ∧  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝑎 𝐼 𝑏 ) ) } | 
						
							| 5 |  | opphl.l | ⊢ 𝐿  =  ( LineG ‘ 𝐺 ) | 
						
							| 6 |  | opphl.d | ⊢ ( 𝜑  →  𝐷  ∈  ran  𝐿 ) | 
						
							| 7 |  | opphl.g | ⊢ ( 𝜑  →  𝐺  ∈  TarskiG ) | 
						
							| 8 |  | oppcom.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑃 ) | 
						
							| 9 |  | oppcom.b | ⊢ ( 𝜑  →  𝐵  ∈  𝑃 ) | 
						
							| 10 |  | oppcom.o | ⊢ ( 𝜑  →  𝐴 𝑂 𝐵 ) | 
						
							| 11 | 1 2 3 4 8 9 | islnopp | ⊢ ( 𝜑  →  ( 𝐴 𝑂 𝐵  ↔  ( ( ¬  𝐴  ∈  𝐷  ∧  ¬  𝐵  ∈  𝐷 )  ∧  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝐴 𝐼 𝐵 ) ) ) ) | 
						
							| 12 | 10 11 | mpbid | ⊢ ( 𝜑  →  ( ( ¬  𝐴  ∈  𝐷  ∧  ¬  𝐵  ∈  𝐷 )  ∧  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝐴 𝐼 𝐵 ) ) ) | 
						
							| 13 | 12 | simpld | ⊢ ( 𝜑  →  ( ¬  𝐴  ∈  𝐷  ∧  ¬  𝐵  ∈  𝐷 ) ) | 
						
							| 14 | 13 | simprd | ⊢ ( 𝜑  →  ¬  𝐵  ∈  𝐷 ) | 
						
							| 15 | 13 | simpld | ⊢ ( 𝜑  →  ¬  𝐴  ∈  𝐷 ) | 
						
							| 16 | 12 | simprd | ⊢ ( 𝜑  →  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝐴 𝐼 𝐵 ) ) | 
						
							| 17 | 7 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝐷 )  ∧  𝑡  ∈  ( 𝐴 𝐼 𝐵 ) )  →  𝐺  ∈  TarskiG ) | 
						
							| 18 | 8 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝐷 )  ∧  𝑡  ∈  ( 𝐴 𝐼 𝐵 ) )  →  𝐴  ∈  𝑃 ) | 
						
							| 19 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝐷 )  →  𝐺  ∈  TarskiG ) | 
						
							| 20 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝐷 )  →  𝐷  ∈  ran  𝐿 ) | 
						
							| 21 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝐷 )  →  𝑡  ∈  𝐷 ) | 
						
							| 22 | 1 5 3 19 20 21 | tglnpt | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝐷 )  →  𝑡  ∈  𝑃 ) | 
						
							| 23 | 22 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝐷 )  ∧  𝑡  ∈  ( 𝐴 𝐼 𝐵 ) )  →  𝑡  ∈  𝑃 ) | 
						
							| 24 | 9 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝐷 )  ∧  𝑡  ∈  ( 𝐴 𝐼 𝐵 ) )  →  𝐵  ∈  𝑃 ) | 
						
							| 25 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝐷 )  ∧  𝑡  ∈  ( 𝐴 𝐼 𝐵 ) )  →  𝑡  ∈  ( 𝐴 𝐼 𝐵 ) ) | 
						
							| 26 | 1 2 3 17 18 23 24 25 | tgbtwncom | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝐷 )  ∧  𝑡  ∈  ( 𝐴 𝐼 𝐵 ) )  →  𝑡  ∈  ( 𝐵 𝐼 𝐴 ) ) | 
						
							| 27 | 7 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝐷 )  ∧  𝑡  ∈  ( 𝐵 𝐼 𝐴 ) )  →  𝐺  ∈  TarskiG ) | 
						
							| 28 | 9 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝐷 )  ∧  𝑡  ∈  ( 𝐵 𝐼 𝐴 ) )  →  𝐵  ∈  𝑃 ) | 
						
							| 29 | 22 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝐷 )  ∧  𝑡  ∈  ( 𝐵 𝐼 𝐴 ) )  →  𝑡  ∈  𝑃 ) | 
						
							| 30 | 8 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝐷 )  ∧  𝑡  ∈  ( 𝐵 𝐼 𝐴 ) )  →  𝐴  ∈  𝑃 ) | 
						
							| 31 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝐷 )  ∧  𝑡  ∈  ( 𝐵 𝐼 𝐴 ) )  →  𝑡  ∈  ( 𝐵 𝐼 𝐴 ) ) | 
						
							| 32 | 1 2 3 27 28 29 30 31 | tgbtwncom | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝐷 )  ∧  𝑡  ∈  ( 𝐵 𝐼 𝐴 ) )  →  𝑡  ∈  ( 𝐴 𝐼 𝐵 ) ) | 
						
							| 33 | 26 32 | impbida | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝐷 )  →  ( 𝑡  ∈  ( 𝐴 𝐼 𝐵 )  ↔  𝑡  ∈  ( 𝐵 𝐼 𝐴 ) ) ) | 
						
							| 34 | 33 | rexbidva | ⊢ ( 𝜑  →  ( ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝐴 𝐼 𝐵 )  ↔  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝐵 𝐼 𝐴 ) ) ) | 
						
							| 35 | 16 34 | mpbid | ⊢ ( 𝜑  →  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝐵 𝐼 𝐴 ) ) | 
						
							| 36 | 14 15 35 | jca31 | ⊢ ( 𝜑  →  ( ( ¬  𝐵  ∈  𝐷  ∧  ¬  𝐴  ∈  𝐷 )  ∧  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝐵 𝐼 𝐴 ) ) ) | 
						
							| 37 | 1 2 3 4 9 8 | islnopp | ⊢ ( 𝜑  →  ( 𝐵 𝑂 𝐴  ↔  ( ( ¬  𝐵  ∈  𝐷  ∧  ¬  𝐴  ∈  𝐷 )  ∧  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝐵 𝐼 𝐴 ) ) ) ) | 
						
							| 38 | 36 37 | mpbird | ⊢ ( 𝜑  →  𝐵 𝑂 𝐴 ) |