| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hpg.p | ⊢ 𝑃  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | hpg.d | ⊢  −   =  ( dist ‘ 𝐺 ) | 
						
							| 3 |  | hpg.i | ⊢ 𝐼  =  ( Itv ‘ 𝐺 ) | 
						
							| 4 |  | hpg.o | ⊢ 𝑂  =  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  ( 𝑃  ∖  𝐷 )  ∧  𝑏  ∈  ( 𝑃  ∖  𝐷 ) )  ∧  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝑎 𝐼 𝑏 ) ) } | 
						
							| 5 |  | opphl.l | ⊢ 𝐿  =  ( LineG ‘ 𝐺 ) | 
						
							| 6 |  | opphl.d | ⊢ ( 𝜑  →  𝐷  ∈  ran  𝐿 ) | 
						
							| 7 |  | opphl.g | ⊢ ( 𝜑  →  𝐺  ∈  TarskiG ) | 
						
							| 8 |  | oppcom.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑃 ) | 
						
							| 9 |  | oppcom.b | ⊢ ( 𝜑  →  𝐵  ∈  𝑃 ) | 
						
							| 10 |  | oppcom.o | ⊢ ( 𝜑  →  𝐴 𝑂 𝐵 ) | 
						
							| 11 | 7 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( 𝐷  =  ( 𝑥 𝐿 𝑦 )  ∧  𝑥  ≠  𝑦 ) )  →  𝐺  ∈  TarskiG ) | 
						
							| 12 |  | simpllr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( 𝐷  =  ( 𝑥 𝐿 𝑦 )  ∧  𝑥  ≠  𝑦 ) )  →  𝑥  ∈  𝑃 ) | 
						
							| 13 |  | simplr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( 𝐷  =  ( 𝑥 𝐿 𝑦 )  ∧  𝑥  ≠  𝑦 ) )  →  𝑦  ∈  𝑃 ) | 
						
							| 14 | 8 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( 𝐷  =  ( 𝑥 𝐿 𝑦 )  ∧  𝑥  ≠  𝑦 ) )  →  𝐴  ∈  𝑃 ) | 
						
							| 15 | 1 2 3 4 5 6 7 8 9 10 | oppne1 | ⊢ ( 𝜑  →  ¬  𝐴  ∈  𝐷 ) | 
						
							| 16 | 15 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( 𝐷  =  ( 𝑥 𝐿 𝑦 )  ∧  𝑥  ≠  𝑦 ) )  →  ¬  𝐴  ∈  𝐷 ) | 
						
							| 17 |  | simprl | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( 𝐷  =  ( 𝑥 𝐿 𝑦 )  ∧  𝑥  ≠  𝑦 ) )  →  𝐷  =  ( 𝑥 𝐿 𝑦 ) ) | 
						
							| 18 | 16 17 | neleqtrd | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( 𝐷  =  ( 𝑥 𝐿 𝑦 )  ∧  𝑥  ≠  𝑦 ) )  →  ¬  𝐴  ∈  ( 𝑥 𝐿 𝑦 ) ) | 
						
							| 19 |  | simprr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( 𝐷  =  ( 𝑥 𝐿 𝑦 )  ∧  𝑥  ≠  𝑦 ) )  →  𝑥  ≠  𝑦 ) | 
						
							| 20 | 19 | neneqd | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( 𝐷  =  ( 𝑥 𝐿 𝑦 )  ∧  𝑥  ≠  𝑦 ) )  →  ¬  𝑥  =  𝑦 ) | 
						
							| 21 |  | ioran | ⊢ ( ¬  ( 𝐴  ∈  ( 𝑥 𝐿 𝑦 )  ∨  𝑥  =  𝑦 )  ↔  ( ¬  𝐴  ∈  ( 𝑥 𝐿 𝑦 )  ∧  ¬  𝑥  =  𝑦 ) ) | 
						
							| 22 | 18 20 21 | sylanbrc | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( 𝐷  =  ( 𝑥 𝐿 𝑦 )  ∧  𝑥  ≠  𝑦 ) )  →  ¬  ( 𝐴  ∈  ( 𝑥 𝐿 𝑦 )  ∨  𝑥  =  𝑦 ) ) | 
						
							| 23 | 1 5 3 11 12 13 14 22 | ncoltgdim2 | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( 𝐷  =  ( 𝑥 𝐿 𝑦 )  ∧  𝑥  ≠  𝑦 ) )  →  𝐺 DimTarskiG≥ 2 ) | 
						
							| 24 | 1 3 5 7 6 | tgisline | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  𝑃 ∃ 𝑦  ∈  𝑃 ( 𝐷  =  ( 𝑥 𝐿 𝑦 )  ∧  𝑥  ≠  𝑦 ) ) | 
						
							| 25 | 23 24 | r19.29vva | ⊢ ( 𝜑  →  𝐺 DimTarskiG≥ 2 ) |