| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hpg.p |
|- P = ( Base ` G ) |
| 2 |
|
hpg.d |
|- .- = ( dist ` G ) |
| 3 |
|
hpg.i |
|- I = ( Itv ` G ) |
| 4 |
|
hpg.o |
|- O = { <. a , b >. | ( ( a e. ( P \ D ) /\ b e. ( P \ D ) ) /\ E. t e. D t e. ( a I b ) ) } |
| 5 |
|
opphl.l |
|- L = ( LineG ` G ) |
| 6 |
|
opphl.d |
|- ( ph -> D e. ran L ) |
| 7 |
|
opphl.g |
|- ( ph -> G e. TarskiG ) |
| 8 |
|
oppcom.a |
|- ( ph -> A e. P ) |
| 9 |
|
oppcom.b |
|- ( ph -> B e. P ) |
| 10 |
|
oppcom.o |
|- ( ph -> A O B ) |
| 11 |
7
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( D = ( x L y ) /\ x =/= y ) ) -> G e. TarskiG ) |
| 12 |
|
simpllr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( D = ( x L y ) /\ x =/= y ) ) -> x e. P ) |
| 13 |
|
simplr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( D = ( x L y ) /\ x =/= y ) ) -> y e. P ) |
| 14 |
8
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( D = ( x L y ) /\ x =/= y ) ) -> A e. P ) |
| 15 |
1 2 3 4 5 6 7 8 9 10
|
oppne1 |
|- ( ph -> -. A e. D ) |
| 16 |
15
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( D = ( x L y ) /\ x =/= y ) ) -> -. A e. D ) |
| 17 |
|
simprl |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( D = ( x L y ) /\ x =/= y ) ) -> D = ( x L y ) ) |
| 18 |
16 17
|
neleqtrd |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( D = ( x L y ) /\ x =/= y ) ) -> -. A e. ( x L y ) ) |
| 19 |
|
simprr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( D = ( x L y ) /\ x =/= y ) ) -> x =/= y ) |
| 20 |
19
|
neneqd |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( D = ( x L y ) /\ x =/= y ) ) -> -. x = y ) |
| 21 |
|
ioran |
|- ( -. ( A e. ( x L y ) \/ x = y ) <-> ( -. A e. ( x L y ) /\ -. x = y ) ) |
| 22 |
18 20 21
|
sylanbrc |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( D = ( x L y ) /\ x =/= y ) ) -> -. ( A e. ( x L y ) \/ x = y ) ) |
| 23 |
1 5 3 11 12 13 14 22
|
ncoltgdim2 |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( D = ( x L y ) /\ x =/= y ) ) -> G TarskiGDim>= 2 ) |
| 24 |
1 3 5 7 6
|
tgisline |
|- ( ph -> E. x e. P E. y e. P ( D = ( x L y ) /\ x =/= y ) ) |
| 25 |
23 24
|
r19.29vva |
|- ( ph -> G TarskiGDim>= 2 ) |