| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hpg.p |  |-  P = ( Base ` G ) | 
						
							| 2 |  | hpg.d |  |-  .- = ( dist ` G ) | 
						
							| 3 |  | hpg.i |  |-  I = ( Itv ` G ) | 
						
							| 4 |  | hpg.o |  |-  O = { <. a , b >. | ( ( a e. ( P \ D ) /\ b e. ( P \ D ) ) /\ E. t e. D t e. ( a I b ) ) } | 
						
							| 5 |  | opphl.l |  |-  L = ( LineG ` G ) | 
						
							| 6 |  | opphl.d |  |-  ( ph -> D e. ran L ) | 
						
							| 7 |  | opphl.g |  |-  ( ph -> G e. TarskiG ) | 
						
							| 8 |  | oppcom.a |  |-  ( ph -> A e. P ) | 
						
							| 9 |  | oppcom.b |  |-  ( ph -> B e. P ) | 
						
							| 10 |  | oppcom.o |  |-  ( ph -> A O B ) | 
						
							| 11 | 7 | ad3antrrr |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( D = ( x L y ) /\ x =/= y ) ) -> G e. TarskiG ) | 
						
							| 12 |  | simpllr |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( D = ( x L y ) /\ x =/= y ) ) -> x e. P ) | 
						
							| 13 |  | simplr |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( D = ( x L y ) /\ x =/= y ) ) -> y e. P ) | 
						
							| 14 | 8 | ad3antrrr |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( D = ( x L y ) /\ x =/= y ) ) -> A e. P ) | 
						
							| 15 | 1 2 3 4 5 6 7 8 9 10 | oppne1 |  |-  ( ph -> -. A e. D ) | 
						
							| 16 | 15 | ad3antrrr |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( D = ( x L y ) /\ x =/= y ) ) -> -. A e. D ) | 
						
							| 17 |  | simprl |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( D = ( x L y ) /\ x =/= y ) ) -> D = ( x L y ) ) | 
						
							| 18 | 16 17 | neleqtrd |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( D = ( x L y ) /\ x =/= y ) ) -> -. A e. ( x L y ) ) | 
						
							| 19 |  | simprr |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( D = ( x L y ) /\ x =/= y ) ) -> x =/= y ) | 
						
							| 20 | 19 | neneqd |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( D = ( x L y ) /\ x =/= y ) ) -> -. x = y ) | 
						
							| 21 |  | ioran |  |-  ( -. ( A e. ( x L y ) \/ x = y ) <-> ( -. A e. ( x L y ) /\ -. x = y ) ) | 
						
							| 22 | 18 20 21 | sylanbrc |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( D = ( x L y ) /\ x =/= y ) ) -> -. ( A e. ( x L y ) \/ x = y ) ) | 
						
							| 23 | 1 5 3 11 12 13 14 22 | ncoltgdim2 |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( D = ( x L y ) /\ x =/= y ) ) -> G TarskiGDim>= 2 ) | 
						
							| 24 | 1 3 5 7 6 | tgisline |  |-  ( ph -> E. x e. P E. y e. P ( D = ( x L y ) /\ x =/= y ) ) | 
						
							| 25 | 23 24 | r19.29vva |  |-  ( ph -> G TarskiGDim>= 2 ) |