Metamath Proof Explorer


Theorem oppnid

Description: The "opposite to a line" relation is irreflexive. (Contributed by Thierry Arnoux, 4-Mar-2020)

Ref Expression
Hypotheses hpg.p
|- P = ( Base ` G )
hpg.d
|- .- = ( dist ` G )
hpg.i
|- I = ( Itv ` G )
hpg.o
|- O = { <. a , b >. | ( ( a e. ( P \ D ) /\ b e. ( P \ D ) ) /\ E. t e. D t e. ( a I b ) ) }
opphl.l
|- L = ( LineG ` G )
opphl.d
|- ( ph -> D e. ran L )
opphl.g
|- ( ph -> G e. TarskiG )
oppnid.1
|- ( ph -> A e. P )
Assertion oppnid
|- ( ph -> -. A O A )

Proof

Step Hyp Ref Expression
1 hpg.p
 |-  P = ( Base ` G )
2 hpg.d
 |-  .- = ( dist ` G )
3 hpg.i
 |-  I = ( Itv ` G )
4 hpg.o
 |-  O = { <. a , b >. | ( ( a e. ( P \ D ) /\ b e. ( P \ D ) ) /\ E. t e. D t e. ( a I b ) ) }
5 opphl.l
 |-  L = ( LineG ` G )
6 opphl.d
 |-  ( ph -> D e. ran L )
7 opphl.g
 |-  ( ph -> G e. TarskiG )
8 oppnid.1
 |-  ( ph -> A e. P )
9 7 ad3antrrr
 |-  ( ( ( ( ph /\ A O A ) /\ t e. D ) /\ t e. ( A I A ) ) -> G e. TarskiG )
10 8 ad3antrrr
 |-  ( ( ( ( ph /\ A O A ) /\ t e. D ) /\ t e. ( A I A ) ) -> A e. P )
11 6 ad3antrrr
 |-  ( ( ( ( ph /\ A O A ) /\ t e. D ) /\ t e. ( A I A ) ) -> D e. ran L )
12 simplr
 |-  ( ( ( ( ph /\ A O A ) /\ t e. D ) /\ t e. ( A I A ) ) -> t e. D )
13 1 5 3 9 11 12 tglnpt
 |-  ( ( ( ( ph /\ A O A ) /\ t e. D ) /\ t e. ( A I A ) ) -> t e. P )
14 simpr
 |-  ( ( ( ( ph /\ A O A ) /\ t e. D ) /\ t e. ( A I A ) ) -> t e. ( A I A ) )
15 1 2 3 9 10 13 14 axtgbtwnid
 |-  ( ( ( ( ph /\ A O A ) /\ t e. D ) /\ t e. ( A I A ) ) -> A = t )
16 15 12 eqeltrd
 |-  ( ( ( ( ph /\ A O A ) /\ t e. D ) /\ t e. ( A I A ) ) -> A e. D )
17 1 2 3 4 8 8 islnopp
 |-  ( ph -> ( A O A <-> ( ( -. A e. D /\ -. A e. D ) /\ E. t e. D t e. ( A I A ) ) ) )
18 17 simplbda
 |-  ( ( ph /\ A O A ) -> E. t e. D t e. ( A I A ) )
19 16 18 r19.29a
 |-  ( ( ph /\ A O A ) -> A e. D )
20 17 simprbda
 |-  ( ( ph /\ A O A ) -> ( -. A e. D /\ -. A e. D ) )
21 20 simpld
 |-  ( ( ph /\ A O A ) -> -. A e. D )
22 19 21 pm2.65da
 |-  ( ph -> -. A O A )