| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hpg.p |  |-  P = ( Base ` G ) | 
						
							| 2 |  | hpg.d |  |-  .- = ( dist ` G ) | 
						
							| 3 |  | hpg.i |  |-  I = ( Itv ` G ) | 
						
							| 4 |  | hpg.o |  |-  O = { <. a , b >. | ( ( a e. ( P \ D ) /\ b e. ( P \ D ) ) /\ E. t e. D t e. ( a I b ) ) } | 
						
							| 5 |  | opphl.l |  |-  L = ( LineG ` G ) | 
						
							| 6 |  | opphl.d |  |-  ( ph -> D e. ran L ) | 
						
							| 7 |  | opphl.g |  |-  ( ph -> G e. TarskiG ) | 
						
							| 8 |  | oppnid.1 |  |-  ( ph -> A e. P ) | 
						
							| 9 | 7 | ad3antrrr |  |-  ( ( ( ( ph /\ A O A ) /\ t e. D ) /\ t e. ( A I A ) ) -> G e. TarskiG ) | 
						
							| 10 | 8 | ad3antrrr |  |-  ( ( ( ( ph /\ A O A ) /\ t e. D ) /\ t e. ( A I A ) ) -> A e. P ) | 
						
							| 11 | 6 | ad3antrrr |  |-  ( ( ( ( ph /\ A O A ) /\ t e. D ) /\ t e. ( A I A ) ) -> D e. ran L ) | 
						
							| 12 |  | simplr |  |-  ( ( ( ( ph /\ A O A ) /\ t e. D ) /\ t e. ( A I A ) ) -> t e. D ) | 
						
							| 13 | 1 5 3 9 11 12 | tglnpt |  |-  ( ( ( ( ph /\ A O A ) /\ t e. D ) /\ t e. ( A I A ) ) -> t e. P ) | 
						
							| 14 |  | simpr |  |-  ( ( ( ( ph /\ A O A ) /\ t e. D ) /\ t e. ( A I A ) ) -> t e. ( A I A ) ) | 
						
							| 15 | 1 2 3 9 10 13 14 | axtgbtwnid |  |-  ( ( ( ( ph /\ A O A ) /\ t e. D ) /\ t e. ( A I A ) ) -> A = t ) | 
						
							| 16 | 15 12 | eqeltrd |  |-  ( ( ( ( ph /\ A O A ) /\ t e. D ) /\ t e. ( A I A ) ) -> A e. D ) | 
						
							| 17 | 1 2 3 4 8 8 | islnopp |  |-  ( ph -> ( A O A <-> ( ( -. A e. D /\ -. A e. D ) /\ E. t e. D t e. ( A I A ) ) ) ) | 
						
							| 18 | 17 | simplbda |  |-  ( ( ph /\ A O A ) -> E. t e. D t e. ( A I A ) ) | 
						
							| 19 | 16 18 | r19.29a |  |-  ( ( ph /\ A O A ) -> A e. D ) | 
						
							| 20 | 17 | simprbda |  |-  ( ( ph /\ A O A ) -> ( -. A e. D /\ -. A e. D ) ) | 
						
							| 21 | 20 | simpld |  |-  ( ( ph /\ A O A ) -> -. A e. D ) | 
						
							| 22 | 19 21 | pm2.65da |  |-  ( ph -> -. A O A ) |