| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hpg.p | ⊢ 𝑃  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | hpg.d | ⊢  −   =  ( dist ‘ 𝐺 ) | 
						
							| 3 |  | hpg.i | ⊢ 𝐼  =  ( Itv ‘ 𝐺 ) | 
						
							| 4 |  | hpg.o | ⊢ 𝑂  =  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  ( 𝑃  ∖  𝐷 )  ∧  𝑏  ∈  ( 𝑃  ∖  𝐷 ) )  ∧  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝑎 𝐼 𝑏 ) ) } | 
						
							| 5 |  | opphl.l | ⊢ 𝐿  =  ( LineG ‘ 𝐺 ) | 
						
							| 6 |  | opphl.d | ⊢ ( 𝜑  →  𝐷  ∈  ran  𝐿 ) | 
						
							| 7 |  | opphl.g | ⊢ ( 𝜑  →  𝐺  ∈  TarskiG ) | 
						
							| 8 |  | oppnid.1 | ⊢ ( 𝜑  →  𝐴  ∈  𝑃 ) | 
						
							| 9 | 7 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝐴 𝑂 𝐴 )  ∧  𝑡  ∈  𝐷 )  ∧  𝑡  ∈  ( 𝐴 𝐼 𝐴 ) )  →  𝐺  ∈  TarskiG ) | 
						
							| 10 | 8 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝐴 𝑂 𝐴 )  ∧  𝑡  ∈  𝐷 )  ∧  𝑡  ∈  ( 𝐴 𝐼 𝐴 ) )  →  𝐴  ∈  𝑃 ) | 
						
							| 11 | 6 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝐴 𝑂 𝐴 )  ∧  𝑡  ∈  𝐷 )  ∧  𝑡  ∈  ( 𝐴 𝐼 𝐴 ) )  →  𝐷  ∈  ran  𝐿 ) | 
						
							| 12 |  | simplr | ⊢ ( ( ( ( 𝜑  ∧  𝐴 𝑂 𝐴 )  ∧  𝑡  ∈  𝐷 )  ∧  𝑡  ∈  ( 𝐴 𝐼 𝐴 ) )  →  𝑡  ∈  𝐷 ) | 
						
							| 13 | 1 5 3 9 11 12 | tglnpt | ⊢ ( ( ( ( 𝜑  ∧  𝐴 𝑂 𝐴 )  ∧  𝑡  ∈  𝐷 )  ∧  𝑡  ∈  ( 𝐴 𝐼 𝐴 ) )  →  𝑡  ∈  𝑃 ) | 
						
							| 14 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  𝐴 𝑂 𝐴 )  ∧  𝑡  ∈  𝐷 )  ∧  𝑡  ∈  ( 𝐴 𝐼 𝐴 ) )  →  𝑡  ∈  ( 𝐴 𝐼 𝐴 ) ) | 
						
							| 15 | 1 2 3 9 10 13 14 | axtgbtwnid | ⊢ ( ( ( ( 𝜑  ∧  𝐴 𝑂 𝐴 )  ∧  𝑡  ∈  𝐷 )  ∧  𝑡  ∈  ( 𝐴 𝐼 𝐴 ) )  →  𝐴  =  𝑡 ) | 
						
							| 16 | 15 12 | eqeltrd | ⊢ ( ( ( ( 𝜑  ∧  𝐴 𝑂 𝐴 )  ∧  𝑡  ∈  𝐷 )  ∧  𝑡  ∈  ( 𝐴 𝐼 𝐴 ) )  →  𝐴  ∈  𝐷 ) | 
						
							| 17 | 1 2 3 4 8 8 | islnopp | ⊢ ( 𝜑  →  ( 𝐴 𝑂 𝐴  ↔  ( ( ¬  𝐴  ∈  𝐷  ∧  ¬  𝐴  ∈  𝐷 )  ∧  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝐴 𝐼 𝐴 ) ) ) ) | 
						
							| 18 | 17 | simplbda | ⊢ ( ( 𝜑  ∧  𝐴 𝑂 𝐴 )  →  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝐴 𝐼 𝐴 ) ) | 
						
							| 19 | 16 18 | r19.29a | ⊢ ( ( 𝜑  ∧  𝐴 𝑂 𝐴 )  →  𝐴  ∈  𝐷 ) | 
						
							| 20 | 17 | simprbda | ⊢ ( ( 𝜑  ∧  𝐴 𝑂 𝐴 )  →  ( ¬  𝐴  ∈  𝐷  ∧  ¬  𝐴  ∈  𝐷 ) ) | 
						
							| 21 | 20 | simpld | ⊢ ( ( 𝜑  ∧  𝐴 𝑂 𝐴 )  →  ¬  𝐴  ∈  𝐷 ) | 
						
							| 22 | 19 21 | pm2.65da | ⊢ ( 𝜑  →  ¬  𝐴 𝑂 𝐴 ) |