Metamath Proof Explorer


Theorem oppnid

Description: The "opposite to a line" relation is irreflexive. (Contributed by Thierry Arnoux, 4-Mar-2020)

Ref Expression
Hypotheses hpg.p 𝑃 = ( Base ‘ 𝐺 )
hpg.d = ( dist ‘ 𝐺 )
hpg.i 𝐼 = ( Itv ‘ 𝐺 )
hpg.o 𝑂 = { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎 ∈ ( 𝑃𝐷 ) ∧ 𝑏 ∈ ( 𝑃𝐷 ) ) ∧ ∃ 𝑡𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑏 ) ) }
opphl.l 𝐿 = ( LineG ‘ 𝐺 )
opphl.d ( 𝜑𝐷 ∈ ran 𝐿 )
opphl.g ( 𝜑𝐺 ∈ TarskiG )
oppnid.1 ( 𝜑𝐴𝑃 )
Assertion oppnid ( 𝜑 → ¬ 𝐴 𝑂 𝐴 )

Proof

Step Hyp Ref Expression
1 hpg.p 𝑃 = ( Base ‘ 𝐺 )
2 hpg.d = ( dist ‘ 𝐺 )
3 hpg.i 𝐼 = ( Itv ‘ 𝐺 )
4 hpg.o 𝑂 = { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎 ∈ ( 𝑃𝐷 ) ∧ 𝑏 ∈ ( 𝑃𝐷 ) ) ∧ ∃ 𝑡𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑏 ) ) }
5 opphl.l 𝐿 = ( LineG ‘ 𝐺 )
6 opphl.d ( 𝜑𝐷 ∈ ran 𝐿 )
7 opphl.g ( 𝜑𝐺 ∈ TarskiG )
8 oppnid.1 ( 𝜑𝐴𝑃 )
9 7 ad3antrrr ( ( ( ( 𝜑𝐴 𝑂 𝐴 ) ∧ 𝑡𝐷 ) ∧ 𝑡 ∈ ( 𝐴 𝐼 𝐴 ) ) → 𝐺 ∈ TarskiG )
10 8 ad3antrrr ( ( ( ( 𝜑𝐴 𝑂 𝐴 ) ∧ 𝑡𝐷 ) ∧ 𝑡 ∈ ( 𝐴 𝐼 𝐴 ) ) → 𝐴𝑃 )
11 6 ad3antrrr ( ( ( ( 𝜑𝐴 𝑂 𝐴 ) ∧ 𝑡𝐷 ) ∧ 𝑡 ∈ ( 𝐴 𝐼 𝐴 ) ) → 𝐷 ∈ ran 𝐿 )
12 simplr ( ( ( ( 𝜑𝐴 𝑂 𝐴 ) ∧ 𝑡𝐷 ) ∧ 𝑡 ∈ ( 𝐴 𝐼 𝐴 ) ) → 𝑡𝐷 )
13 1 5 3 9 11 12 tglnpt ( ( ( ( 𝜑𝐴 𝑂 𝐴 ) ∧ 𝑡𝐷 ) ∧ 𝑡 ∈ ( 𝐴 𝐼 𝐴 ) ) → 𝑡𝑃 )
14 simpr ( ( ( ( 𝜑𝐴 𝑂 𝐴 ) ∧ 𝑡𝐷 ) ∧ 𝑡 ∈ ( 𝐴 𝐼 𝐴 ) ) → 𝑡 ∈ ( 𝐴 𝐼 𝐴 ) )
15 1 2 3 9 10 13 14 axtgbtwnid ( ( ( ( 𝜑𝐴 𝑂 𝐴 ) ∧ 𝑡𝐷 ) ∧ 𝑡 ∈ ( 𝐴 𝐼 𝐴 ) ) → 𝐴 = 𝑡 )
16 15 12 eqeltrd ( ( ( ( 𝜑𝐴 𝑂 𝐴 ) ∧ 𝑡𝐷 ) ∧ 𝑡 ∈ ( 𝐴 𝐼 𝐴 ) ) → 𝐴𝐷 )
17 1 2 3 4 8 8 islnopp ( 𝜑 → ( 𝐴 𝑂 𝐴 ↔ ( ( ¬ 𝐴𝐷 ∧ ¬ 𝐴𝐷 ) ∧ ∃ 𝑡𝐷 𝑡 ∈ ( 𝐴 𝐼 𝐴 ) ) ) )
18 17 simplbda ( ( 𝜑𝐴 𝑂 𝐴 ) → ∃ 𝑡𝐷 𝑡 ∈ ( 𝐴 𝐼 𝐴 ) )
19 16 18 r19.29a ( ( 𝜑𝐴 𝑂 𝐴 ) → 𝐴𝐷 )
20 17 simprbda ( ( 𝜑𝐴 𝑂 𝐴 ) → ( ¬ 𝐴𝐷 ∧ ¬ 𝐴𝐷 ) )
21 20 simpld ( ( 𝜑𝐴 𝑂 𝐴 ) → ¬ 𝐴𝐷 )
22 19 21 pm2.65da ( 𝜑 → ¬ 𝐴 𝑂 𝐴 )