| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hpg.p | ⊢ 𝑃  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | hpg.d | ⊢  −   =  ( dist ‘ 𝐺 ) | 
						
							| 3 |  | hpg.i | ⊢ 𝐼  =  ( Itv ‘ 𝐺 ) | 
						
							| 4 |  | hpg.o | ⊢ 𝑂  =  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  ( 𝑃  ∖  𝐷 )  ∧  𝑏  ∈  ( 𝑃  ∖  𝐷 ) )  ∧  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝑎 𝐼 𝑏 ) ) } | 
						
							| 5 |  | opphl.l | ⊢ 𝐿  =  ( LineG ‘ 𝐺 ) | 
						
							| 6 |  | opphl.d | ⊢ ( 𝜑  →  𝐷  ∈  ran  𝐿 ) | 
						
							| 7 |  | opphl.g | ⊢ ( 𝜑  →  𝐺  ∈  TarskiG ) | 
						
							| 8 |  | opphllem1.s | ⊢ 𝑆  =  ( ( pInvG ‘ 𝐺 ) ‘ 𝑀 ) | 
						
							| 9 |  | opphllem1.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑃 ) | 
						
							| 10 |  | opphllem1.b | ⊢ ( 𝜑  →  𝐵  ∈  𝑃 ) | 
						
							| 11 |  | opphllem1.c | ⊢ ( 𝜑  →  𝐶  ∈  𝑃 ) | 
						
							| 12 |  | opphllem1.r | ⊢ ( 𝜑  →  𝑅  ∈  𝐷 ) | 
						
							| 13 |  | opphllem1.o | ⊢ ( 𝜑  →  𝐴 𝑂 𝐶 ) | 
						
							| 14 |  | opphllem1.m | ⊢ ( 𝜑  →  𝑀  ∈  𝐷 ) | 
						
							| 15 |  | opphllem1.n | ⊢ ( 𝜑  →  𝐴  =  ( 𝑆 ‘ 𝐶 ) ) | 
						
							| 16 |  | opphllem1.x | ⊢ ( 𝜑  →  𝐴  ≠  𝑅 ) | 
						
							| 17 |  | opphllem1.y | ⊢ ( 𝜑  →  𝐵  ≠  𝑅 ) | 
						
							| 18 |  | opphllem1.z | ⊢ ( 𝜑  →  𝐵  ∈  ( 𝑅 𝐼 𝐴 ) ) | 
						
							| 19 | 1 2 3 4 5 6 7 9 11 13 | oppne1 | ⊢ ( 𝜑  →  ¬  𝐴  ∈  𝐷 ) | 
						
							| 20 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝐵  ∈  𝐷 )  ∧  𝐴  =  𝐵 )  →  𝐴  =  𝐵 ) | 
						
							| 21 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝐵  ∈  𝐷 )  ∧  𝐴  =  𝐵 )  →  𝐵  ∈  𝐷 ) | 
						
							| 22 | 20 21 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  𝐵  ∈  𝐷 )  ∧  𝐴  =  𝐵 )  →  𝐴  ∈  𝐷 ) | 
						
							| 23 | 7 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝐵  ∈  𝐷 )  ∧  𝐴  ≠  𝐵 )  →  𝐺  ∈  TarskiG ) | 
						
							| 24 | 10 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝐵  ∈  𝐷 )  ∧  𝐴  ≠  𝐵 )  →  𝐵  ∈  𝑃 ) | 
						
							| 25 | 1 5 3 7 6 12 | tglnpt | ⊢ ( 𝜑  →  𝑅  ∈  𝑃 ) | 
						
							| 26 | 25 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝐵  ∈  𝐷 )  ∧  𝐴  ≠  𝐵 )  →  𝑅  ∈  𝑃 ) | 
						
							| 27 | 9 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝐵  ∈  𝐷 )  ∧  𝐴  ≠  𝐵 )  →  𝐴  ∈  𝑃 ) | 
						
							| 28 | 17 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝐵  ∈  𝐷 )  ∧  𝐴  ≠  𝐵 )  →  𝐵  ≠  𝑅 ) | 
						
							| 29 | 28 | necomd | ⊢ ( ( ( 𝜑  ∧  𝐵  ∈  𝐷 )  ∧  𝐴  ≠  𝐵 )  →  𝑅  ≠  𝐵 ) | 
						
							| 30 | 18 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝐵  ∈  𝐷 )  ∧  𝐴  ≠  𝐵 )  →  𝐵  ∈  ( 𝑅 𝐼 𝐴 ) ) | 
						
							| 31 | 1 3 5 23 26 24 27 29 30 | btwnlng3 | ⊢ ( ( ( 𝜑  ∧  𝐵  ∈  𝐷 )  ∧  𝐴  ≠  𝐵 )  →  𝐴  ∈  ( 𝑅 𝐿 𝐵 ) ) | 
						
							| 32 | 1 3 5 23 24 26 27 28 31 | lncom | ⊢ ( ( ( 𝜑  ∧  𝐵  ∈  𝐷 )  ∧  𝐴  ≠  𝐵 )  →  𝐴  ∈  ( 𝐵 𝐿 𝑅 ) ) | 
						
							| 33 | 6 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝐵  ∈  𝐷 )  ∧  𝐴  ≠  𝐵 )  →  𝐷  ∈  ran  𝐿 ) | 
						
							| 34 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝐵  ∈  𝐷 )  ∧  𝐴  ≠  𝐵 )  →  𝐵  ∈  𝐷 ) | 
						
							| 35 | 12 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝐵  ∈  𝐷 )  ∧  𝐴  ≠  𝐵 )  →  𝑅  ∈  𝐷 ) | 
						
							| 36 | 1 3 5 23 24 26 28 28 33 34 35 | tglinethru | ⊢ ( ( ( 𝜑  ∧  𝐵  ∈  𝐷 )  ∧  𝐴  ≠  𝐵 )  →  𝐷  =  ( 𝐵 𝐿 𝑅 ) ) | 
						
							| 37 | 32 36 | eleqtrrd | ⊢ ( ( ( 𝜑  ∧  𝐵  ∈  𝐷 )  ∧  𝐴  ≠  𝐵 )  →  𝐴  ∈  𝐷 ) | 
						
							| 38 | 22 37 | pm2.61dane | ⊢ ( ( 𝜑  ∧  𝐵  ∈  𝐷 )  →  𝐴  ∈  𝐷 ) | 
						
							| 39 | 19 38 | mtand | ⊢ ( 𝜑  →  ¬  𝐵  ∈  𝐷 ) | 
						
							| 40 | 1 2 3 4 5 6 7 9 11 13 | oppne2 | ⊢ ( 𝜑  →  ¬  𝐶  ∈  𝐷 ) | 
						
							| 41 | 1 5 3 7 6 14 | tglnpt | ⊢ ( 𝜑  →  𝑀  ∈  𝑃 ) | 
						
							| 42 |  | eqid | ⊢ ( pInvG ‘ 𝐺 )  =  ( pInvG ‘ 𝐺 ) | 
						
							| 43 | 1 2 3 5 42 7 41 8 9 | mirbtwn | ⊢ ( 𝜑  →  𝑀  ∈  ( ( 𝑆 ‘ 𝐴 ) 𝐼 𝐴 ) ) | 
						
							| 44 | 15 | eqcomd | ⊢ ( 𝜑  →  ( 𝑆 ‘ 𝐶 )  =  𝐴 ) | 
						
							| 45 | 1 2 3 5 42 7 41 8 11 44 | mircom | ⊢ ( 𝜑  →  ( 𝑆 ‘ 𝐴 )  =  𝐶 ) | 
						
							| 46 | 45 | oveq1d | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ 𝐴 ) 𝐼 𝐴 )  =  ( 𝐶 𝐼 𝐴 ) ) | 
						
							| 47 | 43 46 | eleqtrd | ⊢ ( 𝜑  →  𝑀  ∈  ( 𝐶 𝐼 𝐴 ) ) | 
						
							| 48 | 1 2 3 7 25 11 9 10 41 18 47 | axtgpasch | ⊢ ( 𝜑  →  ∃ 𝑡  ∈  𝑃 ( 𝑡  ∈  ( 𝐵 𝐼 𝐶 )  ∧  𝑡  ∈  ( 𝑀 𝐼 𝑅 ) ) ) | 
						
							| 49 | 7 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑡  ∈  𝑃  ∧  ( 𝑡  ∈  ( 𝐵 𝐼 𝐶 )  ∧  𝑡  ∈  ( 𝑀 𝐼 𝑅 ) ) ) )  ∧  𝑀  =  𝑅 )  →  𝐺  ∈  TarskiG ) | 
						
							| 50 | 25 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑡  ∈  𝑃  ∧  ( 𝑡  ∈  ( 𝐵 𝐼 𝐶 )  ∧  𝑡  ∈  ( 𝑀 𝐼 𝑅 ) ) ) )  ∧  𝑀  =  𝑅 )  →  𝑅  ∈  𝑃 ) | 
						
							| 51 |  | simplrl | ⊢ ( ( ( 𝜑  ∧  ( 𝑡  ∈  𝑃  ∧  ( 𝑡  ∈  ( 𝐵 𝐼 𝐶 )  ∧  𝑡  ∈  ( 𝑀 𝐼 𝑅 ) ) ) )  ∧  𝑀  =  𝑅 )  →  𝑡  ∈  𝑃 ) | 
						
							| 52 |  | simplrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑡  ∈  𝑃  ∧  ( 𝑡  ∈  ( 𝐵 𝐼 𝐶 )  ∧  𝑡  ∈  ( 𝑀 𝐼 𝑅 ) ) ) )  ∧  𝑀  =  𝑅 )  →  ( 𝑡  ∈  ( 𝐵 𝐼 𝐶 )  ∧  𝑡  ∈  ( 𝑀 𝐼 𝑅 ) ) ) | 
						
							| 53 | 52 | simprd | ⊢ ( ( ( 𝜑  ∧  ( 𝑡  ∈  𝑃  ∧  ( 𝑡  ∈  ( 𝐵 𝐼 𝐶 )  ∧  𝑡  ∈  ( 𝑀 𝐼 𝑅 ) ) ) )  ∧  𝑀  =  𝑅 )  →  𝑡  ∈  ( 𝑀 𝐼 𝑅 ) ) | 
						
							| 54 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ( 𝑡  ∈  𝑃  ∧  ( 𝑡  ∈  ( 𝐵 𝐼 𝐶 )  ∧  𝑡  ∈  ( 𝑀 𝐼 𝑅 ) ) ) )  ∧  𝑀  =  𝑅 )  →  𝑀  =  𝑅 ) | 
						
							| 55 | 54 | oveq1d | ⊢ ( ( ( 𝜑  ∧  ( 𝑡  ∈  𝑃  ∧  ( 𝑡  ∈  ( 𝐵 𝐼 𝐶 )  ∧  𝑡  ∈  ( 𝑀 𝐼 𝑅 ) ) ) )  ∧  𝑀  =  𝑅 )  →  ( 𝑀 𝐼 𝑅 )  =  ( 𝑅 𝐼 𝑅 ) ) | 
						
							| 56 | 53 55 | eleqtrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑡  ∈  𝑃  ∧  ( 𝑡  ∈  ( 𝐵 𝐼 𝐶 )  ∧  𝑡  ∈  ( 𝑀 𝐼 𝑅 ) ) ) )  ∧  𝑀  =  𝑅 )  →  𝑡  ∈  ( 𝑅 𝐼 𝑅 ) ) | 
						
							| 57 | 1 2 3 49 50 51 56 | axtgbtwnid | ⊢ ( ( ( 𝜑  ∧  ( 𝑡  ∈  𝑃  ∧  ( 𝑡  ∈  ( 𝐵 𝐼 𝐶 )  ∧  𝑡  ∈  ( 𝑀 𝐼 𝑅 ) ) ) )  ∧  𝑀  =  𝑅 )  →  𝑅  =  𝑡 ) | 
						
							| 58 | 12 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑡  ∈  𝑃  ∧  ( 𝑡  ∈  ( 𝐵 𝐼 𝐶 )  ∧  𝑡  ∈  ( 𝑀 𝐼 𝑅 ) ) ) )  ∧  𝑀  =  𝑅 )  →  𝑅  ∈  𝐷 ) | 
						
							| 59 | 57 58 | eqeltrrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑡  ∈  𝑃  ∧  ( 𝑡  ∈  ( 𝐵 𝐼 𝐶 )  ∧  𝑡  ∈  ( 𝑀 𝐼 𝑅 ) ) ) )  ∧  𝑀  =  𝑅 )  →  𝑡  ∈  𝐷 ) | 
						
							| 60 | 7 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑡  ∈  𝑃  ∧  ( 𝑡  ∈  ( 𝐵 𝐼 𝐶 )  ∧  𝑡  ∈  ( 𝑀 𝐼 𝑅 ) ) ) )  ∧  𝑀  ≠  𝑅 )  →  𝐺  ∈  TarskiG ) | 
						
							| 61 | 41 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑡  ∈  𝑃  ∧  ( 𝑡  ∈  ( 𝐵 𝐼 𝐶 )  ∧  𝑡  ∈  ( 𝑀 𝐼 𝑅 ) ) ) )  ∧  𝑀  ≠  𝑅 )  →  𝑀  ∈  𝑃 ) | 
						
							| 62 | 25 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑡  ∈  𝑃  ∧  ( 𝑡  ∈  ( 𝐵 𝐼 𝐶 )  ∧  𝑡  ∈  ( 𝑀 𝐼 𝑅 ) ) ) )  ∧  𝑀  ≠  𝑅 )  →  𝑅  ∈  𝑃 ) | 
						
							| 63 |  | simplrl | ⊢ ( ( ( 𝜑  ∧  ( 𝑡  ∈  𝑃  ∧  ( 𝑡  ∈  ( 𝐵 𝐼 𝐶 )  ∧  𝑡  ∈  ( 𝑀 𝐼 𝑅 ) ) ) )  ∧  𝑀  ≠  𝑅 )  →  𝑡  ∈  𝑃 ) | 
						
							| 64 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ( 𝑡  ∈  𝑃  ∧  ( 𝑡  ∈  ( 𝐵 𝐼 𝐶 )  ∧  𝑡  ∈  ( 𝑀 𝐼 𝑅 ) ) ) )  ∧  𝑀  ≠  𝑅 )  →  𝑀  ≠  𝑅 ) | 
						
							| 65 |  | simplrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑡  ∈  𝑃  ∧  ( 𝑡  ∈  ( 𝐵 𝐼 𝐶 )  ∧  𝑡  ∈  ( 𝑀 𝐼 𝑅 ) ) ) )  ∧  𝑀  ≠  𝑅 )  →  ( 𝑡  ∈  ( 𝐵 𝐼 𝐶 )  ∧  𝑡  ∈  ( 𝑀 𝐼 𝑅 ) ) ) | 
						
							| 66 | 65 | simprd | ⊢ ( ( ( 𝜑  ∧  ( 𝑡  ∈  𝑃  ∧  ( 𝑡  ∈  ( 𝐵 𝐼 𝐶 )  ∧  𝑡  ∈  ( 𝑀 𝐼 𝑅 ) ) ) )  ∧  𝑀  ≠  𝑅 )  →  𝑡  ∈  ( 𝑀 𝐼 𝑅 ) ) | 
						
							| 67 | 1 3 5 60 61 62 63 64 66 | btwnlng1 | ⊢ ( ( ( 𝜑  ∧  ( 𝑡  ∈  𝑃  ∧  ( 𝑡  ∈  ( 𝐵 𝐼 𝐶 )  ∧  𝑡  ∈  ( 𝑀 𝐼 𝑅 ) ) ) )  ∧  𝑀  ≠  𝑅 )  →  𝑡  ∈  ( 𝑀 𝐿 𝑅 ) ) | 
						
							| 68 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝑀  ≠  𝑅 )  →  𝐺  ∈  TarskiG ) | 
						
							| 69 | 41 | adantr | ⊢ ( ( 𝜑  ∧  𝑀  ≠  𝑅 )  →  𝑀  ∈  𝑃 ) | 
						
							| 70 | 25 | adantr | ⊢ ( ( 𝜑  ∧  𝑀  ≠  𝑅 )  →  𝑅  ∈  𝑃 ) | 
						
							| 71 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑀  ≠  𝑅 )  →  𝑀  ≠  𝑅 ) | 
						
							| 72 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑀  ≠  𝑅 )  →  𝐷  ∈  ran  𝐿 ) | 
						
							| 73 | 14 | adantr | ⊢ ( ( 𝜑  ∧  𝑀  ≠  𝑅 )  →  𝑀  ∈  𝐷 ) | 
						
							| 74 | 12 | adantr | ⊢ ( ( 𝜑  ∧  𝑀  ≠  𝑅 )  →  𝑅  ∈  𝐷 ) | 
						
							| 75 | 1 3 5 68 69 70 71 71 72 73 74 | tglinethru | ⊢ ( ( 𝜑  ∧  𝑀  ≠  𝑅 )  →  𝐷  =  ( 𝑀 𝐿 𝑅 ) ) | 
						
							| 76 | 75 | adantlr | ⊢ ( ( ( 𝜑  ∧  ( 𝑡  ∈  𝑃  ∧  ( 𝑡  ∈  ( 𝐵 𝐼 𝐶 )  ∧  𝑡  ∈  ( 𝑀 𝐼 𝑅 ) ) ) )  ∧  𝑀  ≠  𝑅 )  →  𝐷  =  ( 𝑀 𝐿 𝑅 ) ) | 
						
							| 77 | 67 76 | eleqtrrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑡  ∈  𝑃  ∧  ( 𝑡  ∈  ( 𝐵 𝐼 𝐶 )  ∧  𝑡  ∈  ( 𝑀 𝐼 𝑅 ) ) ) )  ∧  𝑀  ≠  𝑅 )  →  𝑡  ∈  𝐷 ) | 
						
							| 78 | 59 77 | pm2.61dane | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝑃  ∧  ( 𝑡  ∈  ( 𝐵 𝐼 𝐶 )  ∧  𝑡  ∈  ( 𝑀 𝐼 𝑅 ) ) ) )  →  𝑡  ∈  𝐷 ) | 
						
							| 79 |  | simprrl | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝑃  ∧  ( 𝑡  ∈  ( 𝐵 𝐼 𝐶 )  ∧  𝑡  ∈  ( 𝑀 𝐼 𝑅 ) ) ) )  →  𝑡  ∈  ( 𝐵 𝐼 𝐶 ) ) | 
						
							| 80 | 48 78 79 | reximssdv | ⊢ ( 𝜑  →  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝐵 𝐼 𝐶 ) ) | 
						
							| 81 | 39 40 80 | jca31 | ⊢ ( 𝜑  →  ( ( ¬  𝐵  ∈  𝐷  ∧  ¬  𝐶  ∈  𝐷 )  ∧  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝐵 𝐼 𝐶 ) ) ) | 
						
							| 82 | 1 2 3 4 10 11 | islnopp | ⊢ ( 𝜑  →  ( 𝐵 𝑂 𝐶  ↔  ( ( ¬  𝐵  ∈  𝐷  ∧  ¬  𝐶  ∈  𝐷 )  ∧  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝐵 𝐼 𝐶 ) ) ) ) | 
						
							| 83 | 81 82 | mpbird | ⊢ ( 𝜑  →  𝐵 𝑂 𝐶 ) |