| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hpg.p |  |-  P = ( Base ` G ) | 
						
							| 2 |  | hpg.d |  |-  .- = ( dist ` G ) | 
						
							| 3 |  | hpg.i |  |-  I = ( Itv ` G ) | 
						
							| 4 |  | hpg.o |  |-  O = { <. a , b >. | ( ( a e. ( P \ D ) /\ b e. ( P \ D ) ) /\ E. t e. D t e. ( a I b ) ) } | 
						
							| 5 |  | opphl.l |  |-  L = ( LineG ` G ) | 
						
							| 6 |  | opphl.d |  |-  ( ph -> D e. ran L ) | 
						
							| 7 |  | opphl.g |  |-  ( ph -> G e. TarskiG ) | 
						
							| 8 |  | opphllem1.s |  |-  S = ( ( pInvG ` G ) ` M ) | 
						
							| 9 |  | opphllem1.a |  |-  ( ph -> A e. P ) | 
						
							| 10 |  | opphllem1.b |  |-  ( ph -> B e. P ) | 
						
							| 11 |  | opphllem1.c |  |-  ( ph -> C e. P ) | 
						
							| 12 |  | opphllem1.r |  |-  ( ph -> R e. D ) | 
						
							| 13 |  | opphllem1.o |  |-  ( ph -> A O C ) | 
						
							| 14 |  | opphllem1.m |  |-  ( ph -> M e. D ) | 
						
							| 15 |  | opphllem1.n |  |-  ( ph -> A = ( S ` C ) ) | 
						
							| 16 |  | opphllem1.x |  |-  ( ph -> A =/= R ) | 
						
							| 17 |  | opphllem1.y |  |-  ( ph -> B =/= R ) | 
						
							| 18 |  | opphllem1.z |  |-  ( ph -> B e. ( R I A ) ) | 
						
							| 19 | 1 2 3 4 5 6 7 9 11 13 | oppne1 |  |-  ( ph -> -. A e. D ) | 
						
							| 20 |  | simpr |  |-  ( ( ( ph /\ B e. D ) /\ A = B ) -> A = B ) | 
						
							| 21 |  | simplr |  |-  ( ( ( ph /\ B e. D ) /\ A = B ) -> B e. D ) | 
						
							| 22 | 20 21 | eqeltrd |  |-  ( ( ( ph /\ B e. D ) /\ A = B ) -> A e. D ) | 
						
							| 23 | 7 | ad2antrr |  |-  ( ( ( ph /\ B e. D ) /\ A =/= B ) -> G e. TarskiG ) | 
						
							| 24 | 10 | ad2antrr |  |-  ( ( ( ph /\ B e. D ) /\ A =/= B ) -> B e. P ) | 
						
							| 25 | 1 5 3 7 6 12 | tglnpt |  |-  ( ph -> R e. P ) | 
						
							| 26 | 25 | ad2antrr |  |-  ( ( ( ph /\ B e. D ) /\ A =/= B ) -> R e. P ) | 
						
							| 27 | 9 | ad2antrr |  |-  ( ( ( ph /\ B e. D ) /\ A =/= B ) -> A e. P ) | 
						
							| 28 | 17 | ad2antrr |  |-  ( ( ( ph /\ B e. D ) /\ A =/= B ) -> B =/= R ) | 
						
							| 29 | 28 | necomd |  |-  ( ( ( ph /\ B e. D ) /\ A =/= B ) -> R =/= B ) | 
						
							| 30 | 18 | ad2antrr |  |-  ( ( ( ph /\ B e. D ) /\ A =/= B ) -> B e. ( R I A ) ) | 
						
							| 31 | 1 3 5 23 26 24 27 29 30 | btwnlng3 |  |-  ( ( ( ph /\ B e. D ) /\ A =/= B ) -> A e. ( R L B ) ) | 
						
							| 32 | 1 3 5 23 24 26 27 28 31 | lncom |  |-  ( ( ( ph /\ B e. D ) /\ A =/= B ) -> A e. ( B L R ) ) | 
						
							| 33 | 6 | ad2antrr |  |-  ( ( ( ph /\ B e. D ) /\ A =/= B ) -> D e. ran L ) | 
						
							| 34 |  | simplr |  |-  ( ( ( ph /\ B e. D ) /\ A =/= B ) -> B e. D ) | 
						
							| 35 | 12 | ad2antrr |  |-  ( ( ( ph /\ B e. D ) /\ A =/= B ) -> R e. D ) | 
						
							| 36 | 1 3 5 23 24 26 28 28 33 34 35 | tglinethru |  |-  ( ( ( ph /\ B e. D ) /\ A =/= B ) -> D = ( B L R ) ) | 
						
							| 37 | 32 36 | eleqtrrd |  |-  ( ( ( ph /\ B e. D ) /\ A =/= B ) -> A e. D ) | 
						
							| 38 | 22 37 | pm2.61dane |  |-  ( ( ph /\ B e. D ) -> A e. D ) | 
						
							| 39 | 19 38 | mtand |  |-  ( ph -> -. B e. D ) | 
						
							| 40 | 1 2 3 4 5 6 7 9 11 13 | oppne2 |  |-  ( ph -> -. C e. D ) | 
						
							| 41 | 1 5 3 7 6 14 | tglnpt |  |-  ( ph -> M e. P ) | 
						
							| 42 |  | eqid |  |-  ( pInvG ` G ) = ( pInvG ` G ) | 
						
							| 43 | 1 2 3 5 42 7 41 8 9 | mirbtwn |  |-  ( ph -> M e. ( ( S ` A ) I A ) ) | 
						
							| 44 | 15 | eqcomd |  |-  ( ph -> ( S ` C ) = A ) | 
						
							| 45 | 1 2 3 5 42 7 41 8 11 44 | mircom |  |-  ( ph -> ( S ` A ) = C ) | 
						
							| 46 | 45 | oveq1d |  |-  ( ph -> ( ( S ` A ) I A ) = ( C I A ) ) | 
						
							| 47 | 43 46 | eleqtrd |  |-  ( ph -> M e. ( C I A ) ) | 
						
							| 48 | 1 2 3 7 25 11 9 10 41 18 47 | axtgpasch |  |-  ( ph -> E. t e. P ( t e. ( B I C ) /\ t e. ( M I R ) ) ) | 
						
							| 49 | 7 | ad2antrr |  |-  ( ( ( ph /\ ( t e. P /\ ( t e. ( B I C ) /\ t e. ( M I R ) ) ) ) /\ M = R ) -> G e. TarskiG ) | 
						
							| 50 | 25 | ad2antrr |  |-  ( ( ( ph /\ ( t e. P /\ ( t e. ( B I C ) /\ t e. ( M I R ) ) ) ) /\ M = R ) -> R e. P ) | 
						
							| 51 |  | simplrl |  |-  ( ( ( ph /\ ( t e. P /\ ( t e. ( B I C ) /\ t e. ( M I R ) ) ) ) /\ M = R ) -> t e. P ) | 
						
							| 52 |  | simplrr |  |-  ( ( ( ph /\ ( t e. P /\ ( t e. ( B I C ) /\ t e. ( M I R ) ) ) ) /\ M = R ) -> ( t e. ( B I C ) /\ t e. ( M I R ) ) ) | 
						
							| 53 | 52 | simprd |  |-  ( ( ( ph /\ ( t e. P /\ ( t e. ( B I C ) /\ t e. ( M I R ) ) ) ) /\ M = R ) -> t e. ( M I R ) ) | 
						
							| 54 |  | simpr |  |-  ( ( ( ph /\ ( t e. P /\ ( t e. ( B I C ) /\ t e. ( M I R ) ) ) ) /\ M = R ) -> M = R ) | 
						
							| 55 | 54 | oveq1d |  |-  ( ( ( ph /\ ( t e. P /\ ( t e. ( B I C ) /\ t e. ( M I R ) ) ) ) /\ M = R ) -> ( M I R ) = ( R I R ) ) | 
						
							| 56 | 53 55 | eleqtrd |  |-  ( ( ( ph /\ ( t e. P /\ ( t e. ( B I C ) /\ t e. ( M I R ) ) ) ) /\ M = R ) -> t e. ( R I R ) ) | 
						
							| 57 | 1 2 3 49 50 51 56 | axtgbtwnid |  |-  ( ( ( ph /\ ( t e. P /\ ( t e. ( B I C ) /\ t e. ( M I R ) ) ) ) /\ M = R ) -> R = t ) | 
						
							| 58 | 12 | ad2antrr |  |-  ( ( ( ph /\ ( t e. P /\ ( t e. ( B I C ) /\ t e. ( M I R ) ) ) ) /\ M = R ) -> R e. D ) | 
						
							| 59 | 57 58 | eqeltrrd |  |-  ( ( ( ph /\ ( t e. P /\ ( t e. ( B I C ) /\ t e. ( M I R ) ) ) ) /\ M = R ) -> t e. D ) | 
						
							| 60 | 7 | ad2antrr |  |-  ( ( ( ph /\ ( t e. P /\ ( t e. ( B I C ) /\ t e. ( M I R ) ) ) ) /\ M =/= R ) -> G e. TarskiG ) | 
						
							| 61 | 41 | ad2antrr |  |-  ( ( ( ph /\ ( t e. P /\ ( t e. ( B I C ) /\ t e. ( M I R ) ) ) ) /\ M =/= R ) -> M e. P ) | 
						
							| 62 | 25 | ad2antrr |  |-  ( ( ( ph /\ ( t e. P /\ ( t e. ( B I C ) /\ t e. ( M I R ) ) ) ) /\ M =/= R ) -> R e. P ) | 
						
							| 63 |  | simplrl |  |-  ( ( ( ph /\ ( t e. P /\ ( t e. ( B I C ) /\ t e. ( M I R ) ) ) ) /\ M =/= R ) -> t e. P ) | 
						
							| 64 |  | simpr |  |-  ( ( ( ph /\ ( t e. P /\ ( t e. ( B I C ) /\ t e. ( M I R ) ) ) ) /\ M =/= R ) -> M =/= R ) | 
						
							| 65 |  | simplrr |  |-  ( ( ( ph /\ ( t e. P /\ ( t e. ( B I C ) /\ t e. ( M I R ) ) ) ) /\ M =/= R ) -> ( t e. ( B I C ) /\ t e. ( M I R ) ) ) | 
						
							| 66 | 65 | simprd |  |-  ( ( ( ph /\ ( t e. P /\ ( t e. ( B I C ) /\ t e. ( M I R ) ) ) ) /\ M =/= R ) -> t e. ( M I R ) ) | 
						
							| 67 | 1 3 5 60 61 62 63 64 66 | btwnlng1 |  |-  ( ( ( ph /\ ( t e. P /\ ( t e. ( B I C ) /\ t e. ( M I R ) ) ) ) /\ M =/= R ) -> t e. ( M L R ) ) | 
						
							| 68 | 7 | adantr |  |-  ( ( ph /\ M =/= R ) -> G e. TarskiG ) | 
						
							| 69 | 41 | adantr |  |-  ( ( ph /\ M =/= R ) -> M e. P ) | 
						
							| 70 | 25 | adantr |  |-  ( ( ph /\ M =/= R ) -> R e. P ) | 
						
							| 71 |  | simpr |  |-  ( ( ph /\ M =/= R ) -> M =/= R ) | 
						
							| 72 | 6 | adantr |  |-  ( ( ph /\ M =/= R ) -> D e. ran L ) | 
						
							| 73 | 14 | adantr |  |-  ( ( ph /\ M =/= R ) -> M e. D ) | 
						
							| 74 | 12 | adantr |  |-  ( ( ph /\ M =/= R ) -> R e. D ) | 
						
							| 75 | 1 3 5 68 69 70 71 71 72 73 74 | tglinethru |  |-  ( ( ph /\ M =/= R ) -> D = ( M L R ) ) | 
						
							| 76 | 75 | adantlr |  |-  ( ( ( ph /\ ( t e. P /\ ( t e. ( B I C ) /\ t e. ( M I R ) ) ) ) /\ M =/= R ) -> D = ( M L R ) ) | 
						
							| 77 | 67 76 | eleqtrrd |  |-  ( ( ( ph /\ ( t e. P /\ ( t e. ( B I C ) /\ t e. ( M I R ) ) ) ) /\ M =/= R ) -> t e. D ) | 
						
							| 78 | 59 77 | pm2.61dane |  |-  ( ( ph /\ ( t e. P /\ ( t e. ( B I C ) /\ t e. ( M I R ) ) ) ) -> t e. D ) | 
						
							| 79 |  | simprrl |  |-  ( ( ph /\ ( t e. P /\ ( t e. ( B I C ) /\ t e. ( M I R ) ) ) ) -> t e. ( B I C ) ) | 
						
							| 80 | 48 78 79 | reximssdv |  |-  ( ph -> E. t e. D t e. ( B I C ) ) | 
						
							| 81 | 39 40 80 | jca31 |  |-  ( ph -> ( ( -. B e. D /\ -. C e. D ) /\ E. t e. D t e. ( B I C ) ) ) | 
						
							| 82 | 1 2 3 4 10 11 | islnopp |  |-  ( ph -> ( B O C <-> ( ( -. B e. D /\ -. C e. D ) /\ E. t e. D t e. ( B I C ) ) ) ) | 
						
							| 83 | 81 82 | mpbird |  |-  ( ph -> B O C ) |