| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hpg.p |
|- P = ( Base ` G ) |
| 2 |
|
hpg.d |
|- .- = ( dist ` G ) |
| 3 |
|
hpg.i |
|- I = ( Itv ` G ) |
| 4 |
|
hpg.o |
|- O = { <. a , b >. | ( ( a e. ( P \ D ) /\ b e. ( P \ D ) ) /\ E. t e. D t e. ( a I b ) ) } |
| 5 |
|
opphl.l |
|- L = ( LineG ` G ) |
| 6 |
|
opphl.d |
|- ( ph -> D e. ran L ) |
| 7 |
|
opphl.g |
|- ( ph -> G e. TarskiG ) |
| 8 |
|
opphl.k |
|- K = ( hlG ` G ) |
| 9 |
|
opphl.a |
|- ( ph -> A e. P ) |
| 10 |
|
opphl.b |
|- ( ph -> B e. P ) |
| 11 |
|
opphl.c |
|- ( ph -> C e. P ) |
| 12 |
|
opphl.1 |
|- ( ph -> A O C ) |
| 13 |
|
opphl.2 |
|- ( ph -> R e. D ) |
| 14 |
|
opphl.3 |
|- ( ph -> A ( K ` R ) B ) |
| 15 |
6
|
ad8antr |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) /\ y e. D ) /\ ( B L y ) ( perpG ` G ) D ) -> D e. ran L ) |
| 16 |
7
|
ad8antr |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) /\ y e. D ) /\ ( B L y ) ( perpG ` G ) D ) -> G e. TarskiG ) |
| 17 |
|
eqid |
|- ( ( pInvG ` G ) ` m ) = ( ( pInvG ` G ) ` m ) |
| 18 |
10
|
ad8antr |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) /\ y e. D ) /\ ( B L y ) ( perpG ` G ) D ) -> B e. P ) |
| 19 |
|
eqid |
|- ( pInvG ` G ) = ( pInvG ` G ) |
| 20 |
|
simp-4r |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) /\ y e. D ) /\ ( B L y ) ( perpG ` G ) D ) -> m e. P ) |
| 21 |
9
|
ad8antr |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) /\ y e. D ) /\ ( B L y ) ( perpG ` G ) D ) -> A e. P ) |
| 22 |
1 2 3 5 19 16 20 17 21
|
mircl |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) /\ y e. D ) /\ ( B L y ) ( perpG ` G ) D ) -> ( ( ( pInvG ` G ) ` m ) ` A ) e. P ) |
| 23 |
|
simplr |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) /\ y e. D ) /\ ( B L y ) ( perpG ` G ) D ) -> y e. D ) |
| 24 |
|
simp-6r |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) /\ y e. D ) /\ ( B L y ) ( perpG ` G ) D ) -> z e. D ) |
| 25 |
13
|
ad8antr |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) /\ y e. D ) /\ ( B L y ) ( perpG ` G ) D ) -> R e. D ) |
| 26 |
11
|
ad8antr |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) /\ y e. D ) /\ ( B L y ) ( perpG ` G ) D ) -> C e. P ) |
| 27 |
|
simp-8r |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) /\ y e. D ) /\ ( B L y ) ( perpG ` G ) D ) -> x e. D ) |
| 28 |
12
|
ad8antr |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) /\ y e. D ) /\ ( B L y ) ( perpG ` G ) D ) -> A O C ) |
| 29 |
|
simp-7r |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) /\ y e. D ) /\ ( B L y ) ( perpG ` G ) D ) -> ( A L x ) ( perpG ` G ) D ) |
| 30 |
5 16 29
|
perpln1 |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) /\ y e. D ) /\ ( B L y ) ( perpG ` G ) D ) -> ( A L x ) e. ran L ) |
| 31 |
1 2 3 5 16 30 15 29
|
perpcom |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) /\ y e. D ) /\ ( B L y ) ( perpG ` G ) D ) -> D ( perpG ` G ) ( A L x ) ) |
| 32 |
|
simp-5r |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) /\ y e. D ) /\ ( B L y ) ( perpG ` G ) D ) -> ( C L z ) ( perpG ` G ) D ) |
| 33 |
5 16 32
|
perpln1 |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) /\ y e. D ) /\ ( B L y ) ( perpG ` G ) D ) -> ( C L z ) e. ran L ) |
| 34 |
1 2 3 5 16 33 15 32
|
perpcom |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) /\ y e. D ) /\ ( B L y ) ( perpG ` G ) D ) -> D ( perpG ` G ) ( C L z ) ) |
| 35 |
1 5 3 16 15 27
|
tglnpt |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) /\ y e. D ) /\ ( B L y ) ( perpG ` G ) D ) -> x e. P ) |
| 36 |
1 3 5 16 21 35 30
|
tglnne |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) /\ y e. D ) /\ ( B L y ) ( perpG ` G ) D ) -> A =/= x ) |
| 37 |
1 3 8 21 21 35 16 36
|
hlid |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) /\ y e. D ) /\ ( B L y ) ( perpG ` G ) D ) -> A ( K ` x ) A ) |
| 38 |
|
simpllr |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) /\ y e. D ) /\ ( B L y ) ( perpG ` G ) D ) -> z = ( ( ( pInvG ` G ) ` m ) ` x ) ) |
| 39 |
38
|
eqcomd |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) /\ y e. D ) /\ ( B L y ) ( perpG ` G ) D ) -> ( ( ( pInvG ` G ) ` m ) ` x ) = z ) |
| 40 |
1 2 3 4 5 15 16 8 17 21 26 27 24 20 28 31 34 21 39
|
opphllem6 |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) /\ y e. D ) /\ ( B L y ) ( perpG ` G ) D ) -> ( A ( K ` x ) A <-> ( ( ( pInvG ` G ) ` m ) ` A ) ( K ` z ) C ) ) |
| 41 |
37 40
|
mpbid |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) /\ y e. D ) /\ ( B L y ) ( perpG ` G ) D ) -> ( ( ( pInvG ` G ) ` m ) ` A ) ( K ` z ) C ) |
| 42 |
1 2 3 4 5 15 16 8 17 21 26 27 24 20 28 31 34 21 22 37 41
|
opphllem5 |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) /\ y e. D ) /\ ( B L y ) ( perpG ` G ) D ) -> A O ( ( ( pInvG ` G ) ` m ) ` A ) ) |
| 43 |
39 24
|
eqeltrd |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) /\ y e. D ) /\ ( B L y ) ( perpG ` G ) D ) -> ( ( ( pInvG ` G ) ` m ) ` x ) e. D ) |
| 44 |
1 2 3 5 19 16 17 15 20 27 43
|
mirln2 |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) /\ y e. D ) /\ ( B L y ) ( perpG ` G ) D ) -> m e. D ) |
| 45 |
1 2 3 5 19 16 20 17 21
|
mirmir |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) /\ y e. D ) /\ ( B L y ) ( perpG ` G ) D ) -> ( ( ( pInvG ` G ) ` m ) ` ( ( ( pInvG ` G ) ` m ) ` A ) ) = A ) |
| 46 |
45
|
eqcomd |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) /\ y e. D ) /\ ( B L y ) ( perpG ` G ) D ) -> A = ( ( ( pInvG ` G ) ` m ) ` ( ( ( pInvG ` G ) ` m ) ` A ) ) ) |
| 47 |
1 5 3 7 6 13
|
tglnpt |
|- ( ph -> R e. P ) |
| 48 |
1 3 8 9 10 47 7 14
|
hlne1 |
|- ( ph -> A =/= R ) |
| 49 |
48
|
ad8antr |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) /\ y e. D ) /\ ( B L y ) ( perpG ` G ) D ) -> A =/= R ) |
| 50 |
1 3 8 9 10 47 7 14
|
hlne2 |
|- ( ph -> B =/= R ) |
| 51 |
50
|
ad8antr |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) /\ y e. D ) /\ ( B L y ) ( perpG ` G ) D ) -> B =/= R ) |
| 52 |
1 3 8 9 10 47 7
|
ishlg |
|- ( ph -> ( A ( K ` R ) B <-> ( A =/= R /\ B =/= R /\ ( A e. ( R I B ) \/ B e. ( R I A ) ) ) ) ) |
| 53 |
14 52
|
mpbid |
|- ( ph -> ( A =/= R /\ B =/= R /\ ( A e. ( R I B ) \/ B e. ( R I A ) ) ) ) |
| 54 |
53
|
simp3d |
|- ( ph -> ( A e. ( R I B ) \/ B e. ( R I A ) ) ) |
| 55 |
54
|
ad8antr |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) /\ y e. D ) /\ ( B L y ) ( perpG ` G ) D ) -> ( A e. ( R I B ) \/ B e. ( R I A ) ) ) |
| 56 |
1 2 3 4 5 15 16 17 21 18 22 25 42 44 46 49 51 55
|
opphllem2 |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) /\ y e. D ) /\ ( B L y ) ( perpG ` G ) D ) -> B O ( ( ( pInvG ` G ) ` m ) ` A ) ) |
| 57 |
|
simpr |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) /\ y e. D ) /\ ( B L y ) ( perpG ` G ) D ) -> ( B L y ) ( perpG ` G ) D ) |
| 58 |
5 16 57
|
perpln1 |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) /\ y e. D ) /\ ( B L y ) ( perpG ` G ) D ) -> ( B L y ) e. ran L ) |
| 59 |
1 2 3 5 16 58 15 57
|
perpcom |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) /\ y e. D ) /\ ( B L y ) ( perpG ` G ) D ) -> D ( perpG ` G ) ( B L y ) ) |
| 60 |
1 5 3 16 15 24
|
tglnpt |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) /\ y e. D ) /\ ( B L y ) ( perpG ` G ) D ) -> z e. P ) |
| 61 |
1 3 8 22 26 60 16 41
|
hlne1 |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) /\ y e. D ) /\ ( B L y ) ( perpG ` G ) D ) -> ( ( ( pInvG ` G ) ` m ) ` A ) =/= z ) |
| 62 |
1 3 8 22 26 60 16 5 41
|
hlln |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) /\ y e. D ) /\ ( B L y ) ( perpG ` G ) D ) -> ( ( ( pInvG ` G ) ` m ) ` A ) e. ( C L z ) ) |
| 63 |
1 3 5 16 26 60 33
|
tglnne |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) /\ y e. D ) /\ ( B L y ) ( perpG ` G ) D ) -> C =/= z ) |
| 64 |
1 3 5 16 26 60 63
|
tglinerflx2 |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) /\ y e. D ) /\ ( B L y ) ( perpG ` G ) D ) -> z e. ( C L z ) ) |
| 65 |
1 3 5 16 22 60 61 61 33 62 64
|
tglinethru |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) /\ y e. D ) /\ ( B L y ) ( perpG ` G ) D ) -> ( C L z ) = ( ( ( ( pInvG ` G ) ` m ) ` A ) L z ) ) |
| 66 |
34 65
|
breqtrd |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) /\ y e. D ) /\ ( B L y ) ( perpG ` G ) D ) -> D ( perpG ` G ) ( ( ( ( pInvG ` G ) ` m ) ` A ) L z ) ) |
| 67 |
1 5 3 16 15 23
|
tglnpt |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) /\ y e. D ) /\ ( B L y ) ( perpG ` G ) D ) -> y e. P ) |
| 68 |
1 3 5 16 18 67 58
|
tglnne |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) /\ y e. D ) /\ ( B L y ) ( perpG ` G ) D ) -> B =/= y ) |
| 69 |
1 3 8 18 21 67 16 68
|
hlid |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) /\ y e. D ) /\ ( B L y ) ( perpG ` G ) D ) -> B ( K ` y ) B ) |
| 70 |
1 3 8 22 26 60 16 41
|
hlcomd |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) /\ y e. D ) /\ ( B L y ) ( perpG ` G ) D ) -> C ( K ` z ) ( ( ( pInvG ` G ) ` m ) ` A ) ) |
| 71 |
1 2 3 4 5 15 16 8 17 18 22 23 24 20 56 59 66 18 26 69 70
|
opphllem5 |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) /\ y e. D ) /\ ( B L y ) ( perpG ` G ) D ) -> B O C ) |
| 72 |
1 2 3 4 5 6 7 9 11 12
|
oppne1 |
|- ( ph -> -. A e. D ) |
| 73 |
1 3 8 9 10 47 7 5 14
|
hlln |
|- ( ph -> A e. ( B L R ) ) |
| 74 |
73
|
adantr |
|- ( ( ph /\ B e. D ) -> A e. ( B L R ) ) |
| 75 |
7
|
adantr |
|- ( ( ph /\ B e. D ) -> G e. TarskiG ) |
| 76 |
10
|
adantr |
|- ( ( ph /\ B e. D ) -> B e. P ) |
| 77 |
47
|
adantr |
|- ( ( ph /\ B e. D ) -> R e. P ) |
| 78 |
50
|
adantr |
|- ( ( ph /\ B e. D ) -> B =/= R ) |
| 79 |
6
|
adantr |
|- ( ( ph /\ B e. D ) -> D e. ran L ) |
| 80 |
|
simpr |
|- ( ( ph /\ B e. D ) -> B e. D ) |
| 81 |
13
|
adantr |
|- ( ( ph /\ B e. D ) -> R e. D ) |
| 82 |
1 3 5 75 76 77 78 78 79 80 81
|
tglinethru |
|- ( ( ph /\ B e. D ) -> D = ( B L R ) ) |
| 83 |
74 82
|
eleqtrrd |
|- ( ( ph /\ B e. D ) -> A e. D ) |
| 84 |
72 83
|
mtand |
|- ( ph -> -. B e. D ) |
| 85 |
1 2 3 5 7 6 10 84
|
footex |
|- ( ph -> E. y e. D ( B L y ) ( perpG ` G ) D ) |
| 86 |
85
|
ad6antr |
|- ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) -> E. y e. D ( B L y ) ( perpG ` G ) D ) |
| 87 |
71 86
|
r19.29a |
|- ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) -> B O C ) |
| 88 |
7
|
ad4antr |
|- ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) -> G e. TarskiG ) |
| 89 |
6
|
ad4antr |
|- ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) -> D e. ran L ) |
| 90 |
|
simp-4r |
|- ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) -> x e. D ) |
| 91 |
1 5 3 88 89 90
|
tglnpt |
|- ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) -> x e. P ) |
| 92 |
|
simplr |
|- ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) -> z e. D ) |
| 93 |
1 5 3 88 89 92
|
tglnpt |
|- ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) -> z e. P ) |
| 94 |
1 2 3 4 5 6 7 9 11 12
|
opptgdim2 |
|- ( ph -> G TarskiGDim>= 2 ) |
| 95 |
94
|
ad4antr |
|- ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) -> G TarskiGDim>= 2 ) |
| 96 |
1 2 3 5 88 19 91 93 95
|
midex |
|- ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) -> E. m e. P z = ( ( ( pInvG ` G ) ` m ) ` x ) ) |
| 97 |
87 96
|
r19.29a |
|- ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) -> B O C ) |
| 98 |
1 2 3 4 5 6 7 9 11 12
|
oppne2 |
|- ( ph -> -. C e. D ) |
| 99 |
1 2 3 5 7 6 11 98
|
footex |
|- ( ph -> E. z e. D ( C L z ) ( perpG ` G ) D ) |
| 100 |
99
|
ad2antrr |
|- ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) -> E. z e. D ( C L z ) ( perpG ` G ) D ) |
| 101 |
97 100
|
r19.29a |
|- ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) -> B O C ) |
| 102 |
1 2 3 5 7 6 9 72
|
footex |
|- ( ph -> E. x e. D ( A L x ) ( perpG ` G ) D ) |
| 103 |
101 102
|
r19.29a |
|- ( ph -> B O C ) |