| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hpg.p |  |-  P = ( Base ` G ) | 
						
							| 2 |  | hpg.d |  |-  .- = ( dist ` G ) | 
						
							| 3 |  | hpg.i |  |-  I = ( Itv ` G ) | 
						
							| 4 |  | hpg.o |  |-  O = { <. a , b >. | ( ( a e. ( P \ D ) /\ b e. ( P \ D ) ) /\ E. t e. D t e. ( a I b ) ) } | 
						
							| 5 |  | opphl.l |  |-  L = ( LineG ` G ) | 
						
							| 6 |  | opphl.d |  |-  ( ph -> D e. ran L ) | 
						
							| 7 |  | opphl.g |  |-  ( ph -> G e. TarskiG ) | 
						
							| 8 |  | opphllem1.s |  |-  S = ( ( pInvG ` G ) ` M ) | 
						
							| 9 |  | opphllem1.a |  |-  ( ph -> A e. P ) | 
						
							| 10 |  | opphllem1.b |  |-  ( ph -> B e. P ) | 
						
							| 11 |  | opphllem1.c |  |-  ( ph -> C e. P ) | 
						
							| 12 |  | opphllem1.r |  |-  ( ph -> R e. D ) | 
						
							| 13 |  | opphllem1.o |  |-  ( ph -> A O C ) | 
						
							| 14 |  | opphllem1.m |  |-  ( ph -> M e. D ) | 
						
							| 15 |  | opphllem1.n |  |-  ( ph -> A = ( S ` C ) ) | 
						
							| 16 |  | opphllem1.x |  |-  ( ph -> A =/= R ) | 
						
							| 17 |  | opphllem1.y |  |-  ( ph -> B =/= R ) | 
						
							| 18 |  | opphllem2.z |  |-  ( ph -> ( A e. ( R I B ) \/ B e. ( R I A ) ) ) | 
						
							| 19 | 6 | adantr |  |-  ( ( ph /\ A e. ( R I B ) ) -> D e. ran L ) | 
						
							| 20 | 7 | adantr |  |-  ( ( ph /\ A e. ( R I B ) ) -> G e. TarskiG ) | 
						
							| 21 | 11 | adantr |  |-  ( ( ph /\ A e. ( R I B ) ) -> C e. P ) | 
						
							| 22 | 10 | adantr |  |-  ( ( ph /\ A e. ( R I B ) ) -> B e. P ) | 
						
							| 23 |  | eqid |  |-  ( pInvG ` G ) = ( pInvG ` G ) | 
						
							| 24 | 1 5 3 7 6 14 | tglnpt |  |-  ( ph -> M e. P ) | 
						
							| 25 | 24 | adantr |  |-  ( ( ph /\ A e. ( R I B ) ) -> M e. P ) | 
						
							| 26 | 1 2 3 5 23 20 25 8 22 | mircl |  |-  ( ( ph /\ A e. ( R I B ) ) -> ( S ` B ) e. P ) | 
						
							| 27 | 14 | adantr |  |-  ( ( ph /\ A e. ( R I B ) ) -> M e. D ) | 
						
							| 28 | 12 | adantr |  |-  ( ( ph /\ A e. ( R I B ) ) -> R e. D ) | 
						
							| 29 | 1 2 3 5 23 20 8 19 27 28 | mirln |  |-  ( ( ph /\ A e. ( R I B ) ) -> ( S ` R ) e. D ) | 
						
							| 30 |  | simpr |  |-  ( ( ( ( ph /\ A e. ( R I B ) ) /\ B e. D ) /\ A = B ) -> A = B ) | 
						
							| 31 |  | simplr |  |-  ( ( ( ( ph /\ A e. ( R I B ) ) /\ B e. D ) /\ A = B ) -> B e. D ) | 
						
							| 32 | 30 31 | eqeltrd |  |-  ( ( ( ( ph /\ A e. ( R I B ) ) /\ B e. D ) /\ A = B ) -> A e. D ) | 
						
							| 33 | 7 | ad3antrrr |  |-  ( ( ( ( ph /\ A e. ( R I B ) ) /\ B e. D ) /\ A =/= B ) -> G e. TarskiG ) | 
						
							| 34 | 10 | ad3antrrr |  |-  ( ( ( ( ph /\ A e. ( R I B ) ) /\ B e. D ) /\ A =/= B ) -> B e. P ) | 
						
							| 35 | 1 5 3 7 6 12 | tglnpt |  |-  ( ph -> R e. P ) | 
						
							| 36 | 35 | ad3antrrr |  |-  ( ( ( ( ph /\ A e. ( R I B ) ) /\ B e. D ) /\ A =/= B ) -> R e. P ) | 
						
							| 37 | 9 | ad3antrrr |  |-  ( ( ( ( ph /\ A e. ( R I B ) ) /\ B e. D ) /\ A =/= B ) -> A e. P ) | 
						
							| 38 | 17 | ad3antrrr |  |-  ( ( ( ( ph /\ A e. ( R I B ) ) /\ B e. D ) /\ A =/= B ) -> B =/= R ) | 
						
							| 39 | 38 | necomd |  |-  ( ( ( ( ph /\ A e. ( R I B ) ) /\ B e. D ) /\ A =/= B ) -> R =/= B ) | 
						
							| 40 |  | simpllr |  |-  ( ( ( ( ph /\ A e. ( R I B ) ) /\ B e. D ) /\ A =/= B ) -> A e. ( R I B ) ) | 
						
							| 41 | 1 3 5 33 36 34 37 39 40 | btwnlng1 |  |-  ( ( ( ( ph /\ A e. ( R I B ) ) /\ B e. D ) /\ A =/= B ) -> A e. ( R L B ) ) | 
						
							| 42 | 1 3 5 33 34 36 37 38 41 | lncom |  |-  ( ( ( ( ph /\ A e. ( R I B ) ) /\ B e. D ) /\ A =/= B ) -> A e. ( B L R ) ) | 
						
							| 43 | 6 | ad3antrrr |  |-  ( ( ( ( ph /\ A e. ( R I B ) ) /\ B e. D ) /\ A =/= B ) -> D e. ran L ) | 
						
							| 44 |  | simplr |  |-  ( ( ( ( ph /\ A e. ( R I B ) ) /\ B e. D ) /\ A =/= B ) -> B e. D ) | 
						
							| 45 | 12 | ad3antrrr |  |-  ( ( ( ( ph /\ A e. ( R I B ) ) /\ B e. D ) /\ A =/= B ) -> R e. D ) | 
						
							| 46 | 1 3 5 33 34 36 38 38 43 44 45 | tglinethru |  |-  ( ( ( ( ph /\ A e. ( R I B ) ) /\ B e. D ) /\ A =/= B ) -> D = ( B L R ) ) | 
						
							| 47 | 42 46 | eleqtrrd |  |-  ( ( ( ( ph /\ A e. ( R I B ) ) /\ B e. D ) /\ A =/= B ) -> A e. D ) | 
						
							| 48 | 32 47 | pm2.61dane |  |-  ( ( ( ph /\ A e. ( R I B ) ) /\ B e. D ) -> A e. D ) | 
						
							| 49 | 1 2 3 4 5 6 7 9 11 13 | oppne1 |  |-  ( ph -> -. A e. D ) | 
						
							| 50 | 49 | ad2antrr |  |-  ( ( ( ph /\ A e. ( R I B ) ) /\ B e. D ) -> -. A e. D ) | 
						
							| 51 | 48 50 | pm2.65da |  |-  ( ( ph /\ A e. ( R I B ) ) -> -. B e. D ) | 
						
							| 52 | 20 | adantr |  |-  ( ( ( ph /\ A e. ( R I B ) ) /\ ( S ` B ) e. D ) -> G e. TarskiG ) | 
						
							| 53 | 25 | adantr |  |-  ( ( ( ph /\ A e. ( R I B ) ) /\ ( S ` B ) e. D ) -> M e. P ) | 
						
							| 54 | 22 | adantr |  |-  ( ( ( ph /\ A e. ( R I B ) ) /\ ( S ` B ) e. D ) -> B e. P ) | 
						
							| 55 | 1 2 3 5 23 52 53 8 54 | mirmir |  |-  ( ( ( ph /\ A e. ( R I B ) ) /\ ( S ` B ) e. D ) -> ( S ` ( S ` B ) ) = B ) | 
						
							| 56 | 19 | adantr |  |-  ( ( ( ph /\ A e. ( R I B ) ) /\ ( S ` B ) e. D ) -> D e. ran L ) | 
						
							| 57 | 27 | adantr |  |-  ( ( ( ph /\ A e. ( R I B ) ) /\ ( S ` B ) e. D ) -> M e. D ) | 
						
							| 58 |  | simpr |  |-  ( ( ( ph /\ A e. ( R I B ) ) /\ ( S ` B ) e. D ) -> ( S ` B ) e. D ) | 
						
							| 59 | 1 2 3 5 23 52 8 56 57 58 | mirln |  |-  ( ( ( ph /\ A e. ( R I B ) ) /\ ( S ` B ) e. D ) -> ( S ` ( S ` B ) ) e. D ) | 
						
							| 60 | 55 59 | eqeltrrd |  |-  ( ( ( ph /\ A e. ( R I B ) ) /\ ( S ` B ) e. D ) -> B e. D ) | 
						
							| 61 | 51 60 | mtand |  |-  ( ( ph /\ A e. ( R I B ) ) -> -. ( S ` B ) e. D ) | 
						
							| 62 | 1 2 3 5 23 20 25 8 22 | mirbtwn |  |-  ( ( ph /\ A e. ( R I B ) ) -> M e. ( ( S ` B ) I B ) ) | 
						
							| 63 | 1 2 3 4 26 22 27 61 51 62 | islnoppd |  |-  ( ( ph /\ A e. ( R I B ) ) -> ( S ` B ) O B ) | 
						
							| 64 |  | eqidd |  |-  ( ( ph /\ A e. ( R I B ) ) -> ( S ` B ) = ( S ` B ) ) | 
						
							| 65 |  | nelne2 |  |-  ( ( ( S ` R ) e. D /\ -. ( S ` B ) e. D ) -> ( S ` R ) =/= ( S ` B ) ) | 
						
							| 66 | 29 61 65 | syl2anc |  |-  ( ( ph /\ A e. ( R I B ) ) -> ( S ` R ) =/= ( S ` B ) ) | 
						
							| 67 | 66 | necomd |  |-  ( ( ph /\ A e. ( R I B ) ) -> ( S ` B ) =/= ( S ` R ) ) | 
						
							| 68 | 1 2 3 4 5 6 7 9 11 13 | oppne2 |  |-  ( ph -> -. C e. D ) | 
						
							| 69 | 68 | adantr |  |-  ( ( ph /\ A e. ( R I B ) ) -> -. C e. D ) | 
						
							| 70 |  | nelne2 |  |-  ( ( ( S ` R ) e. D /\ -. C e. D ) -> ( S ` R ) =/= C ) | 
						
							| 71 | 29 69 70 | syl2anc |  |-  ( ( ph /\ A e. ( R I B ) ) -> ( S ` R ) =/= C ) | 
						
							| 72 | 71 | necomd |  |-  ( ( ph /\ A e. ( R I B ) ) -> C =/= ( S ` R ) ) | 
						
							| 73 | 15 | eqcomd |  |-  ( ph -> ( S ` C ) = A ) | 
						
							| 74 | 1 2 3 5 23 7 24 8 11 73 | mircom |  |-  ( ph -> ( S ` A ) = C ) | 
						
							| 75 | 74 | adantr |  |-  ( ( ph /\ A e. ( R I B ) ) -> ( S ` A ) = C ) | 
						
							| 76 | 35 | adantr |  |-  ( ( ph /\ A e. ( R I B ) ) -> R e. P ) | 
						
							| 77 | 9 | adantr |  |-  ( ( ph /\ A e. ( R I B ) ) -> A e. P ) | 
						
							| 78 |  | simpr |  |-  ( ( ph /\ A e. ( R I B ) ) -> A e. ( R I B ) ) | 
						
							| 79 | 1 2 3 5 23 20 25 8 76 77 22 78 | mirbtwni |  |-  ( ( ph /\ A e. ( R I B ) ) -> ( S ` A ) e. ( ( S ` R ) I ( S ` B ) ) ) | 
						
							| 80 | 75 79 | eqeltrrd |  |-  ( ( ph /\ A e. ( R I B ) ) -> C e. ( ( S ` R ) I ( S ` B ) ) ) | 
						
							| 81 | 1 2 3 4 5 19 20 8 26 21 22 29 63 27 64 67 72 80 | opphllem1 |  |-  ( ( ph /\ A e. ( R I B ) ) -> C O B ) | 
						
							| 82 | 1 2 3 4 5 19 20 21 22 81 | oppcom |  |-  ( ( ph /\ A e. ( R I B ) ) -> B O C ) | 
						
							| 83 | 6 | adantr |  |-  ( ( ph /\ B e. ( R I A ) ) -> D e. ran L ) | 
						
							| 84 | 7 | adantr |  |-  ( ( ph /\ B e. ( R I A ) ) -> G e. TarskiG ) | 
						
							| 85 | 9 | adantr |  |-  ( ( ph /\ B e. ( R I A ) ) -> A e. P ) | 
						
							| 86 | 10 | adantr |  |-  ( ( ph /\ B e. ( R I A ) ) -> B e. P ) | 
						
							| 87 | 11 | adantr |  |-  ( ( ph /\ B e. ( R I A ) ) -> C e. P ) | 
						
							| 88 | 12 | adantr |  |-  ( ( ph /\ B e. ( R I A ) ) -> R e. D ) | 
						
							| 89 | 13 | adantr |  |-  ( ( ph /\ B e. ( R I A ) ) -> A O C ) | 
						
							| 90 | 14 | adantr |  |-  ( ( ph /\ B e. ( R I A ) ) -> M e. D ) | 
						
							| 91 | 15 | adantr |  |-  ( ( ph /\ B e. ( R I A ) ) -> A = ( S ` C ) ) | 
						
							| 92 | 16 | adantr |  |-  ( ( ph /\ B e. ( R I A ) ) -> A =/= R ) | 
						
							| 93 | 17 | adantr |  |-  ( ( ph /\ B e. ( R I A ) ) -> B =/= R ) | 
						
							| 94 |  | simpr |  |-  ( ( ph /\ B e. ( R I A ) ) -> B e. ( R I A ) ) | 
						
							| 95 | 1 2 3 4 5 83 84 8 85 86 87 88 89 90 91 92 93 94 | opphllem1 |  |-  ( ( ph /\ B e. ( R I A ) ) -> B O C ) | 
						
							| 96 | 82 95 18 | mpjaodan |  |-  ( ph -> B O C ) |