| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hpg.p |
|
| 2 |
|
hpg.d |
|
| 3 |
|
hpg.i |
|
| 4 |
|
hpg.o |
|
| 5 |
|
opphl.l |
|
| 6 |
|
opphl.d |
|
| 7 |
|
opphl.g |
|
| 8 |
|
opphllem1.s |
|
| 9 |
|
opphllem1.a |
|
| 10 |
|
opphllem1.b |
|
| 11 |
|
opphllem1.c |
|
| 12 |
|
opphllem1.r |
|
| 13 |
|
opphllem1.o |
|
| 14 |
|
opphllem1.m |
|
| 15 |
|
opphllem1.n |
|
| 16 |
|
opphllem1.x |
|
| 17 |
|
opphllem1.y |
|
| 18 |
|
opphllem2.z |
|
| 19 |
6
|
adantr |
|
| 20 |
7
|
adantr |
|
| 21 |
11
|
adantr |
|
| 22 |
10
|
adantr |
|
| 23 |
|
eqid |
|
| 24 |
1 5 3 7 6 14
|
tglnpt |
|
| 25 |
24
|
adantr |
|
| 26 |
1 2 3 5 23 20 25 8 22
|
mircl |
|
| 27 |
14
|
adantr |
|
| 28 |
12
|
adantr |
|
| 29 |
1 2 3 5 23 20 8 19 27 28
|
mirln |
|
| 30 |
|
simpr |
|
| 31 |
|
simplr |
|
| 32 |
30 31
|
eqeltrd |
|
| 33 |
7
|
ad3antrrr |
|
| 34 |
10
|
ad3antrrr |
|
| 35 |
1 5 3 7 6 12
|
tglnpt |
|
| 36 |
35
|
ad3antrrr |
|
| 37 |
9
|
ad3antrrr |
|
| 38 |
17
|
ad3antrrr |
|
| 39 |
38
|
necomd |
|
| 40 |
|
simpllr |
|
| 41 |
1 3 5 33 36 34 37 39 40
|
btwnlng1 |
|
| 42 |
1 3 5 33 34 36 37 38 41
|
lncom |
|
| 43 |
6
|
ad3antrrr |
|
| 44 |
|
simplr |
|
| 45 |
12
|
ad3antrrr |
|
| 46 |
1 3 5 33 34 36 38 38 43 44 45
|
tglinethru |
|
| 47 |
42 46
|
eleqtrrd |
|
| 48 |
32 47
|
pm2.61dane |
|
| 49 |
1 2 3 4 5 6 7 9 11 13
|
oppne1 |
|
| 50 |
49
|
ad2antrr |
|
| 51 |
48 50
|
pm2.65da |
|
| 52 |
20
|
adantr |
|
| 53 |
25
|
adantr |
|
| 54 |
22
|
adantr |
|
| 55 |
1 2 3 5 23 52 53 8 54
|
mirmir |
|
| 56 |
19
|
adantr |
|
| 57 |
27
|
adantr |
|
| 58 |
|
simpr |
|
| 59 |
1 2 3 5 23 52 8 56 57 58
|
mirln |
|
| 60 |
55 59
|
eqeltrrd |
|
| 61 |
51 60
|
mtand |
|
| 62 |
1 2 3 5 23 20 25 8 22
|
mirbtwn |
|
| 63 |
1 2 3 4 26 22 27 61 51 62
|
islnoppd |
|
| 64 |
|
eqidd |
|
| 65 |
|
nelne2 |
|
| 66 |
29 61 65
|
syl2anc |
|
| 67 |
66
|
necomd |
|
| 68 |
1 2 3 4 5 6 7 9 11 13
|
oppne2 |
|
| 69 |
68
|
adantr |
|
| 70 |
|
nelne2 |
|
| 71 |
29 69 70
|
syl2anc |
|
| 72 |
71
|
necomd |
|
| 73 |
15
|
eqcomd |
|
| 74 |
1 2 3 5 23 7 24 8 11 73
|
mircom |
|
| 75 |
74
|
adantr |
|
| 76 |
35
|
adantr |
|
| 77 |
9
|
adantr |
|
| 78 |
|
simpr |
|
| 79 |
1 2 3 5 23 20 25 8 76 77 22 78
|
mirbtwni |
|
| 80 |
75 79
|
eqeltrrd |
|
| 81 |
1 2 3 4 5 19 20 8 26 21 22 29 63 27 64 67 72 80
|
opphllem1 |
|
| 82 |
1 2 3 4 5 19 20 21 22 81
|
oppcom |
|
| 83 |
6
|
adantr |
|
| 84 |
7
|
adantr |
|
| 85 |
9
|
adantr |
|
| 86 |
10
|
adantr |
|
| 87 |
11
|
adantr |
|
| 88 |
12
|
adantr |
|
| 89 |
13
|
adantr |
|
| 90 |
14
|
adantr |
|
| 91 |
15
|
adantr |
|
| 92 |
16
|
adantr |
|
| 93 |
17
|
adantr |
|
| 94 |
|
simpr |
|
| 95 |
1 2 3 4 5 83 84 8 85 86 87 88 89 90 91 92 93 94
|
opphllem1 |
|
| 96 |
82 95 18
|
mpjaodan |
|