Metamath Proof Explorer


Theorem opphllem2

Description: Lemma for opphl . Lemma 9.3 of Schwabhauser p. 68. (Contributed by Thierry Arnoux, 21-Dec-2019)

Ref Expression
Hypotheses hpg.p P = Base G
hpg.d - ˙ = dist G
hpg.i I = Itv G
hpg.o O = a b | a P D b P D t D t a I b
opphl.l L = Line 𝒢 G
opphl.d φ D ran L
opphl.g φ G 𝒢 Tarski
opphllem1.s S = pInv 𝒢 G M
opphllem1.a φ A P
opphllem1.b φ B P
opphllem1.c φ C P
opphllem1.r φ R D
opphllem1.o φ A O C
opphllem1.m φ M D
opphllem1.n φ A = S C
opphllem1.x φ A R
opphllem1.y φ B R
opphllem2.z φ A R I B B R I A
Assertion opphllem2 φ B O C

Proof

Step Hyp Ref Expression
1 hpg.p P = Base G
2 hpg.d - ˙ = dist G
3 hpg.i I = Itv G
4 hpg.o O = a b | a P D b P D t D t a I b
5 opphl.l L = Line 𝒢 G
6 opphl.d φ D ran L
7 opphl.g φ G 𝒢 Tarski
8 opphllem1.s S = pInv 𝒢 G M
9 opphllem1.a φ A P
10 opphllem1.b φ B P
11 opphllem1.c φ C P
12 opphllem1.r φ R D
13 opphllem1.o φ A O C
14 opphllem1.m φ M D
15 opphllem1.n φ A = S C
16 opphllem1.x φ A R
17 opphllem1.y φ B R
18 opphllem2.z φ A R I B B R I A
19 6 adantr φ A R I B D ran L
20 7 adantr φ A R I B G 𝒢 Tarski
21 11 adantr φ A R I B C P
22 10 adantr φ A R I B B P
23 eqid pInv 𝒢 G = pInv 𝒢 G
24 1 5 3 7 6 14 tglnpt φ M P
25 24 adantr φ A R I B M P
26 1 2 3 5 23 20 25 8 22 mircl φ A R I B S B P
27 14 adantr φ A R I B M D
28 12 adantr φ A R I B R D
29 1 2 3 5 23 20 8 19 27 28 mirln φ A R I B S R D
30 simpr φ A R I B B D A = B A = B
31 simplr φ A R I B B D A = B B D
32 30 31 eqeltrd φ A R I B B D A = B A D
33 7 ad3antrrr φ A R I B B D A B G 𝒢 Tarski
34 10 ad3antrrr φ A R I B B D A B B P
35 1 5 3 7 6 12 tglnpt φ R P
36 35 ad3antrrr φ A R I B B D A B R P
37 9 ad3antrrr φ A R I B B D A B A P
38 17 ad3antrrr φ A R I B B D A B B R
39 38 necomd φ A R I B B D A B R B
40 simpllr φ A R I B B D A B A R I B
41 1 3 5 33 36 34 37 39 40 btwnlng1 φ A R I B B D A B A R L B
42 1 3 5 33 34 36 37 38 41 lncom φ A R I B B D A B A B L R
43 6 ad3antrrr φ A R I B B D A B D ran L
44 simplr φ A R I B B D A B B D
45 12 ad3antrrr φ A R I B B D A B R D
46 1 3 5 33 34 36 38 38 43 44 45 tglinethru φ A R I B B D A B D = B L R
47 42 46 eleqtrrd φ A R I B B D A B A D
48 32 47 pm2.61dane φ A R I B B D A D
49 1 2 3 4 5 6 7 9 11 13 oppne1 φ ¬ A D
50 49 ad2antrr φ A R I B B D ¬ A D
51 48 50 pm2.65da φ A R I B ¬ B D
52 20 adantr φ A R I B S B D G 𝒢 Tarski
53 25 adantr φ A R I B S B D M P
54 22 adantr φ A R I B S B D B P
55 1 2 3 5 23 52 53 8 54 mirmir φ A R I B S B D S S B = B
56 19 adantr φ A R I B S B D D ran L
57 27 adantr φ A R I B S B D M D
58 simpr φ A R I B S B D S B D
59 1 2 3 5 23 52 8 56 57 58 mirln φ A R I B S B D S S B D
60 55 59 eqeltrrd φ A R I B S B D B D
61 51 60 mtand φ A R I B ¬ S B D
62 1 2 3 5 23 20 25 8 22 mirbtwn φ A R I B M S B I B
63 1 2 3 4 26 22 27 61 51 62 islnoppd φ A R I B S B O B
64 eqidd φ A R I B S B = S B
65 nelne2 S R D ¬ S B D S R S B
66 29 61 65 syl2anc φ A R I B S R S B
67 66 necomd φ A R I B S B S R
68 1 2 3 4 5 6 7 9 11 13 oppne2 φ ¬ C D
69 68 adantr φ A R I B ¬ C D
70 nelne2 S R D ¬ C D S R C
71 29 69 70 syl2anc φ A R I B S R C
72 71 necomd φ A R I B C S R
73 15 eqcomd φ S C = A
74 1 2 3 5 23 7 24 8 11 73 mircom φ S A = C
75 74 adantr φ A R I B S A = C
76 35 adantr φ A R I B R P
77 9 adantr φ A R I B A P
78 simpr φ A R I B A R I B
79 1 2 3 5 23 20 25 8 76 77 22 78 mirbtwni φ A R I B S A S R I S B
80 75 79 eqeltrrd φ A R I B C S R I S B
81 1 2 3 4 5 19 20 8 26 21 22 29 63 27 64 67 72 80 opphllem1 φ A R I B C O B
82 1 2 3 4 5 19 20 21 22 81 oppcom φ A R I B B O C
83 6 adantr φ B R I A D ran L
84 7 adantr φ B R I A G 𝒢 Tarski
85 9 adantr φ B R I A A P
86 10 adantr φ B R I A B P
87 11 adantr φ B R I A C P
88 12 adantr φ B R I A R D
89 13 adantr φ B R I A A O C
90 14 adantr φ B R I A M D
91 15 adantr φ B R I A A = S C
92 16 adantr φ B R I A A R
93 17 adantr φ B R I A B R
94 simpr φ B R I A B R I A
95 1 2 3 4 5 83 84 8 85 86 87 88 89 90 91 92 93 94 opphllem1 φ B R I A B O C
96 82 95 18 mpjaodan φ B O C