Metamath Proof Explorer


Theorem oppne2

Description: Points lying on opposite sides of a line cannot be on the line. (Contributed by Thierry Arnoux, 3-Mar-2020)

Ref Expression
Hypotheses hpg.p P=BaseG
hpg.d -˙=distG
hpg.i I=ItvG
hpg.o O=ab|aPDbPDtDtaIb
opphl.l L=Line𝒢G
opphl.d φDranL
opphl.g φG𝒢Tarski
oppcom.a φAP
oppcom.b φBP
oppcom.o φAOB
Assertion oppne2 φ¬BD

Proof

Step Hyp Ref Expression
1 hpg.p P=BaseG
2 hpg.d -˙=distG
3 hpg.i I=ItvG
4 hpg.o O=ab|aPDbPDtDtaIb
5 opphl.l L=Line𝒢G
6 opphl.d φDranL
7 opphl.g φG𝒢Tarski
8 oppcom.a φAP
9 oppcom.b φBP
10 oppcom.o φAOB
11 1 2 3 4 8 9 islnopp φAOB¬AD¬BDtDtAIB
12 10 11 mpbid φ¬AD¬BDtDtAIB
13 12 simplrd φ¬BD