Metamath Proof Explorer


Theorem oppne3

Description: Points lying on opposite sides of a line cannot be equal. (Contributed by Thierry Arnoux, 3-Aug-2020)

Ref Expression
Hypotheses hpg.p P=BaseG
hpg.d -˙=distG
hpg.i I=ItvG
hpg.o O=ab|aPDbPDtDtaIb
opphl.l L=Line𝒢G
opphl.d φDranL
opphl.g φG𝒢Tarski
oppcom.a φAP
oppcom.b φBP
oppcom.o φAOB
Assertion oppne3 φAB

Proof

Step Hyp Ref Expression
1 hpg.p P=BaseG
2 hpg.d -˙=distG
3 hpg.i I=ItvG
4 hpg.o O=ab|aPDbPDtDtaIb
5 opphl.l L=Line𝒢G
6 opphl.d φDranL
7 opphl.g φG𝒢Tarski
8 oppcom.a φAP
9 oppcom.b φBP
10 oppcom.o φAOB
11 1 2 3 4 5 6 7 8 9 10 oppne1 φ¬AD
12 7 ad3antrrr φA=BtDtAIBG𝒢Tarski
13 8 ad3antrrr φA=BtDtAIBAP
14 6 ad3antrrr φA=BtDtAIBDranL
15 simplr φA=BtDtAIBtD
16 1 5 3 12 14 15 tglnpt φA=BtDtAIBtP
17 simpr φA=BtDtAIBtAIB
18 simpllr φA=BtDtAIBA=B
19 18 oveq2d φA=BtDtAIBAIA=AIB
20 17 19 eleqtrrd φA=BtDtAIBtAIA
21 1 2 3 12 13 16 20 axtgbtwnid φA=BtDtAIBA=t
22 21 15 eqeltrd φA=BtDtAIBAD
23 1 2 3 4 8 9 islnopp φAOB¬AD¬BDtDtAIB
24 10 23 mpbid φ¬AD¬BDtDtAIB
25 24 simprd φtDtAIB
26 25 adantr φA=BtDtAIB
27 22 26 r19.29a φA=BAD
28 11 27 mtand φ¬A=B
29 28 neqned φAB