Metamath Proof Explorer


Theorem oppne3

Description: Points lying on opposite sides of a line cannot be equal. (Contributed by Thierry Arnoux, 3-Aug-2020)

Ref Expression
Hypotheses hpg.p
|- P = ( Base ` G )
hpg.d
|- .- = ( dist ` G )
hpg.i
|- I = ( Itv ` G )
hpg.o
|- O = { <. a , b >. | ( ( a e. ( P \ D ) /\ b e. ( P \ D ) ) /\ E. t e. D t e. ( a I b ) ) }
opphl.l
|- L = ( LineG ` G )
opphl.d
|- ( ph -> D e. ran L )
opphl.g
|- ( ph -> G e. TarskiG )
oppcom.a
|- ( ph -> A e. P )
oppcom.b
|- ( ph -> B e. P )
oppcom.o
|- ( ph -> A O B )
Assertion oppne3
|- ( ph -> A =/= B )

Proof

Step Hyp Ref Expression
1 hpg.p
 |-  P = ( Base ` G )
2 hpg.d
 |-  .- = ( dist ` G )
3 hpg.i
 |-  I = ( Itv ` G )
4 hpg.o
 |-  O = { <. a , b >. | ( ( a e. ( P \ D ) /\ b e. ( P \ D ) ) /\ E. t e. D t e. ( a I b ) ) }
5 opphl.l
 |-  L = ( LineG ` G )
6 opphl.d
 |-  ( ph -> D e. ran L )
7 opphl.g
 |-  ( ph -> G e. TarskiG )
8 oppcom.a
 |-  ( ph -> A e. P )
9 oppcom.b
 |-  ( ph -> B e. P )
10 oppcom.o
 |-  ( ph -> A O B )
11 1 2 3 4 5 6 7 8 9 10 oppne1
 |-  ( ph -> -. A e. D )
12 7 ad3antrrr
 |-  ( ( ( ( ph /\ A = B ) /\ t e. D ) /\ t e. ( A I B ) ) -> G e. TarskiG )
13 8 ad3antrrr
 |-  ( ( ( ( ph /\ A = B ) /\ t e. D ) /\ t e. ( A I B ) ) -> A e. P )
14 6 ad3antrrr
 |-  ( ( ( ( ph /\ A = B ) /\ t e. D ) /\ t e. ( A I B ) ) -> D e. ran L )
15 simplr
 |-  ( ( ( ( ph /\ A = B ) /\ t e. D ) /\ t e. ( A I B ) ) -> t e. D )
16 1 5 3 12 14 15 tglnpt
 |-  ( ( ( ( ph /\ A = B ) /\ t e. D ) /\ t e. ( A I B ) ) -> t e. P )
17 simpr
 |-  ( ( ( ( ph /\ A = B ) /\ t e. D ) /\ t e. ( A I B ) ) -> t e. ( A I B ) )
18 simpllr
 |-  ( ( ( ( ph /\ A = B ) /\ t e. D ) /\ t e. ( A I B ) ) -> A = B )
19 18 oveq2d
 |-  ( ( ( ( ph /\ A = B ) /\ t e. D ) /\ t e. ( A I B ) ) -> ( A I A ) = ( A I B ) )
20 17 19 eleqtrrd
 |-  ( ( ( ( ph /\ A = B ) /\ t e. D ) /\ t e. ( A I B ) ) -> t e. ( A I A ) )
21 1 2 3 12 13 16 20 axtgbtwnid
 |-  ( ( ( ( ph /\ A = B ) /\ t e. D ) /\ t e. ( A I B ) ) -> A = t )
22 21 15 eqeltrd
 |-  ( ( ( ( ph /\ A = B ) /\ t e. D ) /\ t e. ( A I B ) ) -> A e. D )
23 1 2 3 4 8 9 islnopp
 |-  ( ph -> ( A O B <-> ( ( -. A e. D /\ -. B e. D ) /\ E. t e. D t e. ( A I B ) ) ) )
24 10 23 mpbid
 |-  ( ph -> ( ( -. A e. D /\ -. B e. D ) /\ E. t e. D t e. ( A I B ) ) )
25 24 simprd
 |-  ( ph -> E. t e. D t e. ( A I B ) )
26 25 adantr
 |-  ( ( ph /\ A = B ) -> E. t e. D t e. ( A I B ) )
27 22 26 r19.29a
 |-  ( ( ph /\ A = B ) -> A e. D )
28 11 27 mtand
 |-  ( ph -> -. A = B )
29 28 neqned
 |-  ( ph -> A =/= B )