Metamath Proof Explorer


Theorem opphllem3

Description: Lemma for opphl : We assume opphllem3.l "without loss of generality". (Contributed by Thierry Arnoux, 21-Feb-2020)

Ref Expression
Hypotheses hpg.p P = Base G
hpg.d - ˙ = dist G
hpg.i I = Itv G
hpg.o O = a b | a P D b P D t D t a I b
opphl.l L = Line 𝒢 G
opphl.d φ D ran L
opphl.g φ G 𝒢 Tarski
opphl.k K = hl 𝒢 G
opphllem5.n N = pInv 𝒢 G M
opphllem5.a φ A P
opphllem5.c φ C P
opphllem5.r φ R D
opphllem5.s φ S D
opphllem5.m φ M P
opphllem5.o φ A O C
opphllem5.p φ D 𝒢 G A L R
opphllem5.q φ D 𝒢 G C L S
opphllem3.t φ R S
opphllem3.l φ S - ˙ C 𝒢 G R - ˙ A
opphllem3.u φ U P
opphllem3.v φ N R = S
Assertion opphllem3 φ U K R A N U K S C

Proof

Step Hyp Ref Expression
1 hpg.p P = Base G
2 hpg.d - ˙ = dist G
3 hpg.i I = Itv G
4 hpg.o O = a b | a P D b P D t D t a I b
5 opphl.l L = Line 𝒢 G
6 opphl.d φ D ran L
7 opphl.g φ G 𝒢 Tarski
8 opphl.k K = hl 𝒢 G
9 opphllem5.n N = pInv 𝒢 G M
10 opphllem5.a φ A P
11 opphllem5.c φ C P
12 opphllem5.r φ R D
13 opphllem5.s φ S D
14 opphllem5.m φ M P
15 opphllem5.o φ A O C
16 opphllem5.p φ D 𝒢 G A L R
17 opphllem5.q φ D 𝒢 G C L S
18 opphllem3.t φ R S
19 opphllem3.l φ S - ˙ C 𝒢 G R - ˙ A
20 opphllem3.u φ U P
21 opphllem3.v φ N R = S
22 20 ad4antr φ t D t A I C p P p R I A S - ˙ C = R - ˙ p U P
23 10 ad4antr φ t D t A I C p P p R I A S - ˙ C = R - ˙ p A P
24 1 5 3 7 6 12 tglnpt φ R P
25 24 ad4antr φ t D t A I C p P p R I A S - ˙ C = R - ˙ p R P
26 7 ad4antr φ t D t A I C p P p R I A S - ˙ C = R - ˙ p G 𝒢 Tarski
27 simplr φ t D t A I C p P p R I A S - ˙ C = R - ˙ p p P
28 simprl φ t D t A I C p P p R I A S - ˙ C = R - ˙ p p R I A
29 5 7 16 perpln2 φ A L R ran L
30 1 3 5 7 10 24 29 tglnne φ A R
31 30 ad4antr φ t D t A I C p P p R I A S - ˙ C = R - ˙ p A R
32 11 ad4antr φ t D t A I C p P p R I A S - ˙ C = R - ˙ p C P
33 1 5 3 7 6 13 tglnpt φ S P
34 33 ad4antr φ t D t A I C p P p R I A S - ˙ C = R - ˙ p S P
35 simprr φ t D t A I C p P p R I A S - ˙ C = R - ˙ p S - ˙ C = R - ˙ p
36 1 2 3 26 34 32 25 27 35 tgcgrcomlr φ t D t A I C p P p R I A S - ˙ C = R - ˙ p C - ˙ S = p - ˙ R
37 17 ad4antr φ t D t A I C p P p R I A S - ˙ C = R - ˙ p D 𝒢 G C L S
38 5 26 37 perpln2 φ t D t A I C p P p R I A S - ˙ C = R - ˙ p C L S ran L
39 1 3 5 26 32 34 38 tglnne φ t D t A I C p P p R I A S - ˙ C = R - ˙ p C S
40 1 2 3 26 32 34 27 25 36 39 tgcgrneq φ t D t A I C p P p R I A S - ˙ C = R - ˙ p p R
41 1 3 8 22 23 25 26 27 28 31 40 hlbtwn φ t D t A I C p P p R I A S - ˙ C = R - ˙ p U K R A U K R p
42 eqid pInv 𝒢 G = pInv 𝒢 G
43 26 adantr φ t D t A I C p P p R I A S - ˙ C = R - ˙ p U K R p G 𝒢 Tarski
44 14 ad5antr φ t D t A I C p P p R I A S - ˙ C = R - ˙ p U K R p M P
45 22 adantr φ t D t A I C p P p R I A S - ˙ C = R - ˙ p U K R p U P
46 simpllr φ t D t A I C p P p R I A S - ˙ C = R - ˙ p U K R p p P
47 25 adantr φ t D t A I C p P p R I A S - ˙ C = R - ˙ p U K R p R P
48 simpr φ t D t A I C p P p R I A S - ˙ C = R - ˙ p U K R p U K R p
49 1 2 3 5 42 43 9 8 44 45 46 47 48 mirhl φ t D t A I C p P p R I A S - ˙ C = R - ˙ p U K R p N U K N R N p
50 eqidd φ t D t A I C p P p R I A S - ˙ C = R - ˙ p U K R p N U = N U
51 21 ad5antr φ t D t A I C p P p R I A S - ˙ C = R - ˙ p U K R p N R = S
52 51 fveq2d φ t D t A I C p P p R I A S - ˙ C = R - ˙ p U K R p K N R = K S
53 simprr φ t D t A I C p P p R I A S - ˙ C = R - ˙ p m P R = pInv 𝒢 G m S C = pInv 𝒢 G m p C = pInv 𝒢 G m p
54 26 ad2antrr φ t D t A I C p P p R I A S - ˙ C = R - ˙ p m P R = pInv 𝒢 G m S C = pInv 𝒢 G m p G 𝒢 Tarski
55 simplr φ t D t A I C p P p R I A S - ˙ C = R - ˙ p m P R = pInv 𝒢 G m S C = pInv 𝒢 G m p m P
56 14 ad6antr φ t D t A I C p P p R I A S - ˙ C = R - ˙ p m P R = pInv 𝒢 G m S C = pInv 𝒢 G m p M P
57 34 ad2antrr φ t D t A I C p P p R I A S - ˙ C = R - ˙ p m P R = pInv 𝒢 G m S C = pInv 𝒢 G m p S P
58 25 ad2antrr φ t D t A I C p P p R I A S - ˙ C = R - ˙ p m P R = pInv 𝒢 G m S C = pInv 𝒢 G m p R P
59 simprl φ t D t A I C p P p R I A S - ˙ C = R - ˙ p m P R = pInv 𝒢 G m S C = pInv 𝒢 G m p R = pInv 𝒢 G m S
60 59 eqcomd φ t D t A I C p P p R I A S - ˙ C = R - ˙ p m P R = pInv 𝒢 G m S C = pInv 𝒢 G m p pInv 𝒢 G m S = R
61 9 fveq1i N S = pInv 𝒢 G M S
62 1 2 3 5 42 7 14 9 24 21 mircom φ N S = R
63 61 62 eqtr3id φ pInv 𝒢 G M S = R
64 63 ad6antr φ t D t A I C p P p R I A S - ˙ C = R - ˙ p m P R = pInv 𝒢 G m S C = pInv 𝒢 G m p pInv 𝒢 G M S = R
65 1 2 3 5 42 54 55 56 57 58 60 64 miduniq φ t D t A I C p P p R I A S - ˙ C = R - ˙ p m P R = pInv 𝒢 G m S C = pInv 𝒢 G m p m = M
66 65 fveq2d φ t D t A I C p P p R I A S - ˙ C = R - ˙ p m P R = pInv 𝒢 G m S C = pInv 𝒢 G m p pInv 𝒢 G m = pInv 𝒢 G M
67 66 9 eqtr4di φ t D t A I C p P p R I A S - ˙ C = R - ˙ p m P R = pInv 𝒢 G m S C = pInv 𝒢 G m p pInv 𝒢 G m = N
68 67 fveq1d φ t D t A I C p P p R I A S - ˙ C = R - ˙ p m P R = pInv 𝒢 G m S C = pInv 𝒢 G m p pInv 𝒢 G m p = N p
69 53 68 eqtr2d φ t D t A I C p P p R I A S - ˙ C = R - ˙ p m P R = pInv 𝒢 G m S C = pInv 𝒢 G m p N p = C
70 18 ad4antr φ t D t A I C p P p R I A S - ˙ C = R - ˙ p R S
71 70 necomd φ t D t A I C p P p R I A S - ˙ C = R - ˙ p S R
72 6 ad4antr φ t D t A I C p P p R I A S - ˙ C = R - ˙ p D ran L
73 simp-4r φ t D t A I C p P p R I A S - ˙ C = R - ˙ p t D
74 1 5 3 26 72 73 tglnpt φ t D t A I C p P p R I A S - ˙ C = R - ˙ p t P
75 13 ad4antr φ t D t A I C p P p R I A S - ˙ C = R - ˙ p S D
76 12 ad4antr φ t D t A I C p P p R I A S - ˙ C = R - ˙ p R D
77 1 3 5 26 34 25 71 71 72 75 76 tglinethru φ t D t A I C p P p R I A S - ˙ C = R - ˙ p D = S L R
78 16 ad4antr φ t D t A I C p P p R I A S - ˙ C = R - ˙ p D 𝒢 G A L R
79 77 78 eqbrtrrd φ t D t A I C p P p R I A S - ˙ C = R - ˙ p S L R 𝒢 G A L R
80 1 3 5 26 32 34 39 tglinecom φ t D t A I C p P p R I A S - ˙ C = R - ˙ p C L S = S L C
81 37 77 80 3brtr3d φ t D t A I C p P p R I A S - ˙ C = R - ˙ p S L R 𝒢 G S L C
82 73 77 eleqtrd φ t D t A I C p P p R I A S - ˙ C = R - ˙ p t S L R
83 simpllr φ t D t A I C p P p R I A S - ˙ C = R - ˙ p t A I C
84 1 2 3 5 26 42 34 25 71 23 32 74 79 81 82 83 27 28 35 opphllem φ t D t A I C p P p R I A S - ˙ C = R - ˙ p m P R = pInv 𝒢 G m S C = pInv 𝒢 G m p
85 69 84 r19.29a φ t D t A I C p P p R I A S - ˙ C = R - ˙ p N p = C
86 85 adantr φ t D t A I C p P p R I A S - ˙ C = R - ˙ p U K R p N p = C
87 50 52 86 breq123d φ t D t A I C p P p R I A S - ˙ C = R - ˙ p U K R p N U K N R N p N U K S C
88 49 87 mpbid φ t D t A I C p P p R I A S - ˙ C = R - ˙ p U K R p N U K S C
89 26 adantr φ t D t A I C p P p R I A S - ˙ C = R - ˙ p N U K S C G 𝒢 Tarski
90 14 ad5antr φ t D t A I C p P p R I A S - ˙ C = R - ˙ p N U K S C M P
91 1 2 3 5 42 7 14 9 20 mircl φ N U P
92 91 ad5antr φ t D t A I C p P p R I A S - ˙ C = R - ˙ p N U K S C N U P
93 32 adantr φ t D t A I C p P p R I A S - ˙ C = R - ˙ p N U K S C C P
94 34 adantr φ t D t A I C p P p R I A S - ˙ C = R - ˙ p N U K S C S P
95 simpr φ t D t A I C p P p R I A S - ˙ C = R - ˙ p N U K S C N U K S C
96 1 2 3 5 42 89 9 8 90 92 93 94 95 mirhl φ t D t A I C p P p R I A S - ˙ C = R - ˙ p N U K S C N N U K N S N C
97 22 adantr φ t D t A I C p P p R I A S - ˙ C = R - ˙ p N U K S C U P
98 1 2 3 5 42 89 90 9 97 mirmir φ t D t A I C p P p R I A S - ˙ C = R - ˙ p N U K S C N N U = U
99 25 adantr φ t D t A I C p P p R I A S - ˙ C = R - ˙ p N U K S C R P
100 21 ad5antr φ t D t A I C p P p R I A S - ˙ C = R - ˙ p N U K S C N R = S
101 1 2 3 5 42 89 90 9 99 100 mircom φ t D t A I C p P p R I A S - ˙ C = R - ˙ p N U K S C N S = R
102 101 fveq2d φ t D t A I C p P p R I A S - ˙ C = R - ˙ p N U K S C K N S = K R
103 simpllr φ t D t A I C p P p R I A S - ˙ C = R - ˙ p N U K S C p P
104 85 adantr φ t D t A I C p P p R I A S - ˙ C = R - ˙ p N U K S C N p = C
105 1 2 3 5 42 89 90 9 103 104 mircom φ t D t A I C p P p R I A S - ˙ C = R - ˙ p N U K S C N C = p
106 98 102 105 breq123d φ t D t A I C p P p R I A S - ˙ C = R - ˙ p N U K S C N N U K N S N C U K R p
107 96 106 mpbid φ t D t A I C p P p R I A S - ˙ C = R - ˙ p N U K S C U K R p
108 88 107 impbida φ t D t A I C p P p R I A S - ˙ C = R - ˙ p U K R p N U K S C
109 41 108 bitrd φ t D t A I C p P p R I A S - ˙ C = R - ˙ p U K R A N U K S C
110 eqid 𝒢 G = 𝒢 G
111 1 2 3 110 7 33 11 24 10 legov φ S - ˙ C 𝒢 G R - ˙ A p P p R I A S - ˙ C = R - ˙ p
112 19 111 mpbid φ p P p R I A S - ˙ C = R - ˙ p
113 112 ad2antrr φ t D t A I C p P p R I A S - ˙ C = R - ˙ p
114 109 113 r19.29a φ t D t A I C U K R A N U K S C
115 1 2 3 4 10 11 islnopp φ A O C ¬ A D ¬ C D t D t A I C
116 15 115 mpbid φ ¬ A D ¬ C D t D t A I C
117 116 simprd φ t D t A I C
118 114 117 r19.29a φ U K R A N U K S C