Metamath Proof Explorer


Theorem perpln2

Description: Derive a line from perpendicularity. (Contributed by Thierry Arnoux, 27-Nov-2019)

Ref Expression
Hypotheses perpln.l L=Line𝒢G
perpln.1 φG𝒢Tarski
perpln.2 φA𝒢GB
Assertion perpln2 φBranL

Proof

Step Hyp Ref Expression
1 perpln.l L=Line𝒢G
2 perpln.1 φG𝒢Tarski
3 perpln.2 φA𝒢GB
4 df-perpg 𝒢=gVab|aranLine𝒢gbranLine𝒢gxabuavb⟨“uxv”⟩𝒢g
5 simpr φg=Gg=G
6 5 fveq2d φg=GLine𝒢g=Line𝒢G
7 6 1 eqtr4di φg=GLine𝒢g=L
8 7 rneqd φg=GranLine𝒢g=ranL
9 8 eleq2d φg=GaranLine𝒢garanL
10 8 eleq2d φg=GbranLine𝒢gbranL
11 9 10 anbi12d φg=GaranLine𝒢gbranLine𝒢garanLbranL
12 5 fveq2d φg=G𝒢g=𝒢G
13 12 eleq2d φg=G⟨“uxv”⟩𝒢g⟨“uxv”⟩𝒢G
14 13 ralbidv φg=Gvb⟨“uxv”⟩𝒢gvb⟨“uxv”⟩𝒢G
15 14 rexralbidv φg=Gxabuavb⟨“uxv”⟩𝒢gxabuavb⟨“uxv”⟩𝒢G
16 11 15 anbi12d φg=GaranLine𝒢gbranLine𝒢gxabuavb⟨“uxv”⟩𝒢garanLbranLxabuavb⟨“uxv”⟩𝒢G
17 16 opabbidv φg=Gab|aranLine𝒢gbranLine𝒢gxabuavb⟨“uxv”⟩𝒢g=ab|aranLbranLxabuavb⟨“uxv”⟩𝒢G
18 2 elexd φGV
19 1 fvexi LV
20 rnexg LVranLV
21 19 20 mp1i φranLV
22 21 21 xpexd φranL×ranLV
23 opabssxp ab|aranLbranLxabuavb⟨“uxv”⟩𝒢GranL×ranL
24 23 a1i φab|aranLbranLxabuavb⟨“uxv”⟩𝒢GranL×ranL
25 22 24 ssexd φab|aranLbranLxabuavb⟨“uxv”⟩𝒢GV
26 4 17 18 25 fvmptd2 φ𝒢G=ab|aranLbranLxabuavb⟨“uxv”⟩𝒢G
27 26 rneqd φran𝒢G=ranab|aranLbranLxabuavb⟨“uxv”⟩𝒢G
28 23 rnssi ranab|aranLbranLxabuavb⟨“uxv”⟩𝒢GranranL×ranL
29 27 28 eqsstrdi φran𝒢GranranL×ranL
30 rnxpss ranranL×ranLranL
31 29 30 sstrdi φran𝒢GranL
32 relopabv Relab|aranLbranLxabuavb⟨“uxv”⟩𝒢G
33 26 releqd φRel𝒢GRelab|aranLbranLxabuavb⟨“uxv”⟩𝒢G
34 32 33 mpbiri φRel𝒢G
35 brrelex12 Rel𝒢GA𝒢GBAVBV
36 34 3 35 syl2anc φAVBV
37 36 simpld φAV
38 36 simprd φBV
39 brelrng AVBVA𝒢GBBran𝒢G
40 37 38 3 39 syl3anc φBran𝒢G
41 31 40 sseldd φBranL