Description: Derive a line from perpendicularity. (Contributed by Thierry Arnoux, 27-Nov-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | perpln.l | |
|
perpln.1 | |
||
perpln.2 | |
||
Assertion | perpln2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | perpln.l | |
|
2 | perpln.1 | |
|
3 | perpln.2 | |
|
4 | df-perpg | |
|
5 | simpr | |
|
6 | 5 | fveq2d | |
7 | 6 1 | eqtr4di | |
8 | 7 | rneqd | |
9 | 8 | eleq2d | |
10 | 8 | eleq2d | |
11 | 9 10 | anbi12d | |
12 | 5 | fveq2d | |
13 | 12 | eleq2d | |
14 | 13 | ralbidv | |
15 | 14 | rexralbidv | |
16 | 11 15 | anbi12d | |
17 | 16 | opabbidv | |
18 | 2 | elexd | |
19 | 1 | fvexi | |
20 | rnexg | |
|
21 | 19 20 | mp1i | |
22 | 21 21 | xpexd | |
23 | opabssxp | |
|
24 | 23 | a1i | |
25 | 22 24 | ssexd | |
26 | 4 17 18 25 | fvmptd2 | |
27 | 26 | rneqd | |
28 | 23 | rnssi | |
29 | 27 28 | eqsstrdi | |
30 | rnxpss | |
|
31 | 29 30 | sstrdi | |
32 | relopabv | |
|
33 | 26 | releqd | |
34 | 32 33 | mpbiri | |
35 | brrelex12 | |
|
36 | 34 3 35 | syl2anc | |
37 | 36 | simpld | |
38 | 36 | simprd | |
39 | brelrng | |
|
40 | 37 38 3 39 | syl3anc | |
41 | 31 40 | sseldd | |