Metamath Proof Explorer


Definition df-rag

Description: Define the class of right angles. Definition 8.1 of Schwabhauser p. 57. See israg . (Contributed by Thierry Arnoux, 25-Aug-2019)

Ref Expression
Assertion df-rag 𝒢=gVwWordBaseg|w=3w0distgw2=w0distgpInv𝒢gw1w2

Detailed syntax breakdown

Step Hyp Ref Expression
0 crag class𝒢
1 vg setvarg
2 cvv classV
3 vw setvarw
4 cbs classBase
5 1 cv setvarg
6 5 4 cfv classBaseg
7 6 cword classWordBaseg
8 chash class.
9 3 cv setvarw
10 9 8 cfv classw
11 c3 class3
12 10 11 wceq wffw=3
13 cc0 class0
14 13 9 cfv classw0
15 cds classdist
16 5 15 cfv classdistg
17 c2 class2
18 17 9 cfv classw2
19 14 18 16 co classw0distgw2
20 cmir classpInv𝒢
21 5 20 cfv classpInv𝒢g
22 c1 class1
23 22 9 cfv classw1
24 23 21 cfv classpInv𝒢gw1
25 18 24 cfv classpInv𝒢gw1w2
26 14 25 16 co classw0distgpInv𝒢gw1w2
27 19 26 wceq wffw0distgw2=w0distgpInv𝒢gw1w2
28 12 27 wa wffw=3w0distgw2=w0distgpInv𝒢gw1w2
29 28 3 7 crab classwWordBaseg|w=3w0distgw2=w0distgpInv𝒢gw1w2
30 1 2 29 cmpt classgVwWordBaseg|w=3w0distgw2=w0distgpInv𝒢gw1w2
31 0 30 wceq wff𝒢=gVwWordBaseg|w=3w0distgw2=w0distgpInv𝒢gw1w2