| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hpg.p |  | 
						
							| 2 |  | hpg.d |  | 
						
							| 3 |  | hpg.i |  | 
						
							| 4 |  | hpg.o |  | 
						
							| 5 |  | opphl.l |  | 
						
							| 6 |  | opphl.d |  | 
						
							| 7 |  | opphl.g |  | 
						
							| 8 |  | opphl.k |  | 
						
							| 9 |  | opphllem5.n |  | 
						
							| 10 |  | opphllem5.a |  | 
						
							| 11 |  | opphllem5.c |  | 
						
							| 12 |  | opphllem5.r |  | 
						
							| 13 |  | opphllem5.s |  | 
						
							| 14 |  | opphllem5.m |  | 
						
							| 15 |  | opphllem5.o |  | 
						
							| 16 |  | opphllem5.p |  | 
						
							| 17 |  | opphllem5.q |  | 
						
							| 18 |  | opphllem3.t |  | 
						
							| 19 |  | opphllem3.l |  | 
						
							| 20 |  | opphllem3.u |  | 
						
							| 21 |  | opphllem3.v |  | 
						
							| 22 |  | opphllem4.u |  | 
						
							| 23 |  | opphllem4.1 |  | 
						
							| 24 |  | opphllem4.2 |  | 
						
							| 25 |  | eqid |  | 
						
							| 26 | 1 2 3 5 25 7 14 9 20 | mircl |  | 
						
							| 27 | 1 5 3 7 6 13 | tglnpt |  | 
						
							| 28 | 1 5 3 7 6 12 | tglnpt |  | 
						
							| 29 | 18 | necomd |  | 
						
							| 30 | 1 2 3 5 25 7 14 9 28 | mirbtwn |  | 
						
							| 31 | 21 | oveq1d |  | 
						
							| 32 | 30 31 | eleqtrd |  | 
						
							| 33 | 1 3 5 7 27 28 14 29 32 | btwnlng1 |  | 
						
							| 34 | 1 3 5 7 27 28 29 29 6 13 12 | tglinethru |  | 
						
							| 35 | 33 34 | eleqtrrd |  | 
						
							| 36 | 1 2 3 4 5 6 7 10 11 15 | oppne1 |  | 
						
							| 37 | 1 3 8 20 10 28 7 23 | hlne1 |  | 
						
							| 38 | 37 | necomd |  | 
						
							| 39 | 1 3 8 20 10 28 7 5 23 | hlln |  | 
						
							| 40 | 1 3 8 20 10 28 7 23 | hlne2 |  | 
						
							| 41 | 1 3 5 7 28 20 10 38 39 40 | lnrot1 |  | 
						
							| 42 | 41 | adantr |  | 
						
							| 43 | 7 | adantr |  | 
						
							| 44 | 28 | adantr |  | 
						
							| 45 | 20 | adantr |  | 
						
							| 46 | 38 | adantr |  | 
						
							| 47 | 6 | adantr |  | 
						
							| 48 | 12 | adantr |  | 
						
							| 49 |  | simpr |  | 
						
							| 50 | 1 3 5 43 44 45 46 46 47 48 49 | tglinethru |  | 
						
							| 51 | 42 50 | eleqtrrd |  | 
						
							| 52 | 36 51 | mtand |  | 
						
							| 53 | 7 | adantr |  | 
						
							| 54 | 14 | adantr |  | 
						
							| 55 | 20 | adantr |  | 
						
							| 56 | 1 2 3 5 25 53 54 9 55 | mirmir |  | 
						
							| 57 | 6 | adantr |  | 
						
							| 58 | 35 | adantr |  | 
						
							| 59 |  | simpr |  | 
						
							| 60 | 1 2 3 5 25 53 9 57 58 59 | mirln |  | 
						
							| 61 | 56 60 | eqeltrrd |  | 
						
							| 62 | 52 61 | mtand |  | 
						
							| 63 | 1 2 3 5 25 7 14 9 20 | mirbtwn |  | 
						
							| 64 | 1 2 3 4 26 20 35 62 52 63 | islnoppd |  | 
						
							| 65 |  | eqidd |  | 
						
							| 66 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | opphllem3 |  | 
						
							| 67 | 23 66 | mpbid |  | 
						
							| 68 | 1 3 8 22 11 27 7 24 | hlcomd |  | 
						
							| 69 | 1 3 8 26 11 22 7 27 67 68 | hltr |  | 
						
							| 70 | 1 3 8 26 22 27 7 | ishlg |  | 
						
							| 71 | 69 70 | mpbid |  | 
						
							| 72 | 71 | simp1d |  | 
						
							| 73 | 1 3 8 11 22 27 7 68 | hlne2 |  | 
						
							| 74 | 71 | simp3d |  | 
						
							| 75 | 1 2 3 4 5 6 7 9 26 22 20 13 64 35 65 72 73 74 | opphllem2 |  | 
						
							| 76 | 1 2 3 4 5 6 7 22 20 75 | oppcom |  |