| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hpg.p |  |-  P = ( Base ` G ) | 
						
							| 2 |  | hpg.d |  |-  .- = ( dist ` G ) | 
						
							| 3 |  | hpg.i |  |-  I = ( Itv ` G ) | 
						
							| 4 |  | hpg.o |  |-  O = { <. a , b >. | ( ( a e. ( P \ D ) /\ b e. ( P \ D ) ) /\ E. t e. D t e. ( a I b ) ) } | 
						
							| 5 |  | opphl.l |  |-  L = ( LineG ` G ) | 
						
							| 6 |  | opphl.d |  |-  ( ph -> D e. ran L ) | 
						
							| 7 |  | opphl.g |  |-  ( ph -> G e. TarskiG ) | 
						
							| 8 |  | opphl.k |  |-  K = ( hlG ` G ) | 
						
							| 9 |  | opphllem5.n |  |-  N = ( ( pInvG ` G ) ` M ) | 
						
							| 10 |  | opphllem5.a |  |-  ( ph -> A e. P ) | 
						
							| 11 |  | opphllem5.c |  |-  ( ph -> C e. P ) | 
						
							| 12 |  | opphllem5.r |  |-  ( ph -> R e. D ) | 
						
							| 13 |  | opphllem5.s |  |-  ( ph -> S e. D ) | 
						
							| 14 |  | opphllem5.m |  |-  ( ph -> M e. P ) | 
						
							| 15 |  | opphllem5.o |  |-  ( ph -> A O C ) | 
						
							| 16 |  | opphllem5.p |  |-  ( ph -> D ( perpG ` G ) ( A L R ) ) | 
						
							| 17 |  | opphllem5.q |  |-  ( ph -> D ( perpG ` G ) ( C L S ) ) | 
						
							| 18 |  | opphllem3.t |  |-  ( ph -> R =/= S ) | 
						
							| 19 |  | opphllem3.l |  |-  ( ph -> ( S .- C ) ( leG ` G ) ( R .- A ) ) | 
						
							| 20 |  | opphllem3.u |  |-  ( ph -> U e. P ) | 
						
							| 21 |  | opphllem3.v |  |-  ( ph -> ( N ` R ) = S ) | 
						
							| 22 |  | opphllem4.u |  |-  ( ph -> V e. P ) | 
						
							| 23 |  | opphllem4.1 |  |-  ( ph -> U ( K ` R ) A ) | 
						
							| 24 |  | opphllem4.2 |  |-  ( ph -> V ( K ` S ) C ) | 
						
							| 25 |  | eqid |  |-  ( pInvG ` G ) = ( pInvG ` G ) | 
						
							| 26 | 1 2 3 5 25 7 14 9 20 | mircl |  |-  ( ph -> ( N ` U ) e. P ) | 
						
							| 27 | 1 5 3 7 6 13 | tglnpt |  |-  ( ph -> S e. P ) | 
						
							| 28 | 1 5 3 7 6 12 | tglnpt |  |-  ( ph -> R e. P ) | 
						
							| 29 | 18 | necomd |  |-  ( ph -> S =/= R ) | 
						
							| 30 | 1 2 3 5 25 7 14 9 28 | mirbtwn |  |-  ( ph -> M e. ( ( N ` R ) I R ) ) | 
						
							| 31 | 21 | oveq1d |  |-  ( ph -> ( ( N ` R ) I R ) = ( S I R ) ) | 
						
							| 32 | 30 31 | eleqtrd |  |-  ( ph -> M e. ( S I R ) ) | 
						
							| 33 | 1 3 5 7 27 28 14 29 32 | btwnlng1 |  |-  ( ph -> M e. ( S L R ) ) | 
						
							| 34 | 1 3 5 7 27 28 29 29 6 13 12 | tglinethru |  |-  ( ph -> D = ( S L R ) ) | 
						
							| 35 | 33 34 | eleqtrrd |  |-  ( ph -> M e. D ) | 
						
							| 36 | 1 2 3 4 5 6 7 10 11 15 | oppne1 |  |-  ( ph -> -. A e. D ) | 
						
							| 37 | 1 3 8 20 10 28 7 23 | hlne1 |  |-  ( ph -> U =/= R ) | 
						
							| 38 | 37 | necomd |  |-  ( ph -> R =/= U ) | 
						
							| 39 | 1 3 8 20 10 28 7 5 23 | hlln |  |-  ( ph -> U e. ( A L R ) ) | 
						
							| 40 | 1 3 8 20 10 28 7 23 | hlne2 |  |-  ( ph -> A =/= R ) | 
						
							| 41 | 1 3 5 7 28 20 10 38 39 40 | lnrot1 |  |-  ( ph -> A e. ( R L U ) ) | 
						
							| 42 | 41 | adantr |  |-  ( ( ph /\ U e. D ) -> A e. ( R L U ) ) | 
						
							| 43 | 7 | adantr |  |-  ( ( ph /\ U e. D ) -> G e. TarskiG ) | 
						
							| 44 | 28 | adantr |  |-  ( ( ph /\ U e. D ) -> R e. P ) | 
						
							| 45 | 20 | adantr |  |-  ( ( ph /\ U e. D ) -> U e. P ) | 
						
							| 46 | 38 | adantr |  |-  ( ( ph /\ U e. D ) -> R =/= U ) | 
						
							| 47 | 6 | adantr |  |-  ( ( ph /\ U e. D ) -> D e. ran L ) | 
						
							| 48 | 12 | adantr |  |-  ( ( ph /\ U e. D ) -> R e. D ) | 
						
							| 49 |  | simpr |  |-  ( ( ph /\ U e. D ) -> U e. D ) | 
						
							| 50 | 1 3 5 43 44 45 46 46 47 48 49 | tglinethru |  |-  ( ( ph /\ U e. D ) -> D = ( R L U ) ) | 
						
							| 51 | 42 50 | eleqtrrd |  |-  ( ( ph /\ U e. D ) -> A e. D ) | 
						
							| 52 | 36 51 | mtand |  |-  ( ph -> -. U e. D ) | 
						
							| 53 | 7 | adantr |  |-  ( ( ph /\ ( N ` U ) e. D ) -> G e. TarskiG ) | 
						
							| 54 | 14 | adantr |  |-  ( ( ph /\ ( N ` U ) e. D ) -> M e. P ) | 
						
							| 55 | 20 | adantr |  |-  ( ( ph /\ ( N ` U ) e. D ) -> U e. P ) | 
						
							| 56 | 1 2 3 5 25 53 54 9 55 | mirmir |  |-  ( ( ph /\ ( N ` U ) e. D ) -> ( N ` ( N ` U ) ) = U ) | 
						
							| 57 | 6 | adantr |  |-  ( ( ph /\ ( N ` U ) e. D ) -> D e. ran L ) | 
						
							| 58 | 35 | adantr |  |-  ( ( ph /\ ( N ` U ) e. D ) -> M e. D ) | 
						
							| 59 |  | simpr |  |-  ( ( ph /\ ( N ` U ) e. D ) -> ( N ` U ) e. D ) | 
						
							| 60 | 1 2 3 5 25 53 9 57 58 59 | mirln |  |-  ( ( ph /\ ( N ` U ) e. D ) -> ( N ` ( N ` U ) ) e. D ) | 
						
							| 61 | 56 60 | eqeltrrd |  |-  ( ( ph /\ ( N ` U ) e. D ) -> U e. D ) | 
						
							| 62 | 52 61 | mtand |  |-  ( ph -> -. ( N ` U ) e. D ) | 
						
							| 63 | 1 2 3 5 25 7 14 9 20 | mirbtwn |  |-  ( ph -> M e. ( ( N ` U ) I U ) ) | 
						
							| 64 | 1 2 3 4 26 20 35 62 52 63 | islnoppd |  |-  ( ph -> ( N ` U ) O U ) | 
						
							| 65 |  | eqidd |  |-  ( ph -> ( N ` U ) = ( N ` U ) ) | 
						
							| 66 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | opphllem3 |  |-  ( ph -> ( U ( K ` R ) A <-> ( N ` U ) ( K ` S ) C ) ) | 
						
							| 67 | 23 66 | mpbid |  |-  ( ph -> ( N ` U ) ( K ` S ) C ) | 
						
							| 68 | 1 3 8 22 11 27 7 24 | hlcomd |  |-  ( ph -> C ( K ` S ) V ) | 
						
							| 69 | 1 3 8 26 11 22 7 27 67 68 | hltr |  |-  ( ph -> ( N ` U ) ( K ` S ) V ) | 
						
							| 70 | 1 3 8 26 22 27 7 | ishlg |  |-  ( ph -> ( ( N ` U ) ( K ` S ) V <-> ( ( N ` U ) =/= S /\ V =/= S /\ ( ( N ` U ) e. ( S I V ) \/ V e. ( S I ( N ` U ) ) ) ) ) ) | 
						
							| 71 | 69 70 | mpbid |  |-  ( ph -> ( ( N ` U ) =/= S /\ V =/= S /\ ( ( N ` U ) e. ( S I V ) \/ V e. ( S I ( N ` U ) ) ) ) ) | 
						
							| 72 | 71 | simp1d |  |-  ( ph -> ( N ` U ) =/= S ) | 
						
							| 73 | 1 3 8 11 22 27 7 68 | hlne2 |  |-  ( ph -> V =/= S ) | 
						
							| 74 | 71 | simp3d |  |-  ( ph -> ( ( N ` U ) e. ( S I V ) \/ V e. ( S I ( N ` U ) ) ) ) | 
						
							| 75 | 1 2 3 4 5 6 7 9 26 22 20 13 64 35 65 72 73 74 | opphllem2 |  |-  ( ph -> V O U ) | 
						
							| 76 | 1 2 3 4 5 6 7 22 20 75 | oppcom |  |-  ( ph -> U O V ) |