| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hpg.p |  |-  P = ( Base ` G ) | 
						
							| 2 |  | hpg.d |  |-  .- = ( dist ` G ) | 
						
							| 3 |  | hpg.i |  |-  I = ( Itv ` G ) | 
						
							| 4 |  | hpg.o |  |-  O = { <. a , b >. | ( ( a e. ( P \ D ) /\ b e. ( P \ D ) ) /\ E. t e. D t e. ( a I b ) ) } | 
						
							| 5 |  | opphl.l |  |-  L = ( LineG ` G ) | 
						
							| 6 |  | opphl.d |  |-  ( ph -> D e. ran L ) | 
						
							| 7 |  | opphl.g |  |-  ( ph -> G e. TarskiG ) | 
						
							| 8 |  | opphl.k |  |-  K = ( hlG ` G ) | 
						
							| 9 |  | opphllem5.n |  |-  N = ( ( pInvG ` G ) ` M ) | 
						
							| 10 |  | opphllem5.a |  |-  ( ph -> A e. P ) | 
						
							| 11 |  | opphllem5.c |  |-  ( ph -> C e. P ) | 
						
							| 12 |  | opphllem5.r |  |-  ( ph -> R e. D ) | 
						
							| 13 |  | opphllem5.s |  |-  ( ph -> S e. D ) | 
						
							| 14 |  | opphllem5.m |  |-  ( ph -> M e. P ) | 
						
							| 15 |  | opphllem5.o |  |-  ( ph -> A O C ) | 
						
							| 16 |  | opphllem5.p |  |-  ( ph -> D ( perpG ` G ) ( A L R ) ) | 
						
							| 17 |  | opphllem5.q |  |-  ( ph -> D ( perpG ` G ) ( C L S ) ) | 
						
							| 18 |  | opphllem5.u |  |-  ( ph -> U e. P ) | 
						
							| 19 |  | opphllem5.v |  |-  ( ph -> V e. P ) | 
						
							| 20 |  | opphllem5.1 |  |-  ( ph -> U ( K ` R ) A ) | 
						
							| 21 |  | opphllem5.2 |  |-  ( ph -> V ( K ` S ) C ) | 
						
							| 22 | 1 5 3 7 6 12 | tglnpt |  |-  ( ph -> R e. P ) | 
						
							| 23 | 1 3 8 18 10 22 7 20 | hlne2 |  |-  ( ph -> A =/= R ) | 
						
							| 24 | 1 3 5 7 10 22 23 | tglinecom |  |-  ( ph -> ( A L R ) = ( R L A ) ) | 
						
							| 25 | 16 24 | breqtrd |  |-  ( ph -> D ( perpG ` G ) ( R L A ) ) | 
						
							| 26 | 1 3 8 18 10 22 7 20 | hlcomd |  |-  ( ph -> A ( K ` R ) U ) | 
						
							| 27 | 1 2 3 5 7 6 8 12 10 18 25 26 | hlperpnel |  |-  ( ph -> -. U e. D ) | 
						
							| 28 | 27 | ad3antrrr |  |-  ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) -> -. U e. D ) | 
						
							| 29 | 1 5 3 7 6 13 | tglnpt |  |-  ( ph -> S e. P ) | 
						
							| 30 | 1 3 8 19 11 29 7 21 | hlne2 |  |-  ( ph -> C =/= S ) | 
						
							| 31 | 1 3 5 7 11 29 30 | tglinecom |  |-  ( ph -> ( C L S ) = ( S L C ) ) | 
						
							| 32 | 17 31 | breqtrd |  |-  ( ph -> D ( perpG ` G ) ( S L C ) ) | 
						
							| 33 | 1 3 8 19 11 29 7 21 | hlcomd |  |-  ( ph -> C ( K ` S ) V ) | 
						
							| 34 | 1 2 3 5 7 6 8 13 11 19 32 33 | hlperpnel |  |-  ( ph -> -. V e. D ) | 
						
							| 35 | 34 | ad3antrrr |  |-  ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) -> -. V e. D ) | 
						
							| 36 |  | simplr |  |-  ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) -> t e. D ) | 
						
							| 37 |  | simpr |  |-  ( ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) /\ R = t ) -> R = t ) | 
						
							| 38 |  | eqid |  |-  ( pInvG ` G ) = ( pInvG ` G ) | 
						
							| 39 | 7 | ad4antr |  |-  ( ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) /\ R =/= t ) -> G e. TarskiG ) | 
						
							| 40 | 11 | ad4antr |  |-  ( ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) /\ R =/= t ) -> C e. P ) | 
						
							| 41 | 22 | ad4antr |  |-  ( ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) /\ R =/= t ) -> R e. P ) | 
						
							| 42 | 7 | ad3antrrr |  |-  ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) -> G e. TarskiG ) | 
						
							| 43 | 6 | ad3antrrr |  |-  ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) -> D e. ran L ) | 
						
							| 44 | 1 5 3 42 43 36 | tglnpt |  |-  ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) -> t e. P ) | 
						
							| 45 | 44 | adantr |  |-  ( ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) /\ R =/= t ) -> t e. P ) | 
						
							| 46 | 10 | ad4antr |  |-  ( ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) /\ R =/= t ) -> A e. P ) | 
						
							| 47 | 29 | ad4antr |  |-  ( ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) /\ R =/= t ) -> S e. P ) | 
						
							| 48 |  | simpllr |  |-  ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) -> R = S ) | 
						
							| 49 | 1 3 5 7 11 29 30 | tglinerflx2 |  |-  ( ph -> S e. ( C L S ) ) | 
						
							| 50 | 49 | ad3antrrr |  |-  ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) -> S e. ( C L S ) ) | 
						
							| 51 | 48 50 | eqeltrd |  |-  ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) -> R e. ( C L S ) ) | 
						
							| 52 | 51 | adantr |  |-  ( ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) /\ R =/= t ) -> R e. ( C L S ) ) | 
						
							| 53 | 5 7 17 | perpln2 |  |-  ( ph -> ( C L S ) e. ran L ) | 
						
							| 54 | 1 2 3 5 7 6 53 17 | perpcom |  |-  ( ph -> ( C L S ) ( perpG ` G ) D ) | 
						
							| 55 | 54 | ad4antr |  |-  ( ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) /\ R =/= t ) -> ( C L S ) ( perpG ` G ) D ) | 
						
							| 56 |  | simpr |  |-  ( ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) /\ R =/= t ) -> R =/= t ) | 
						
							| 57 | 6 | ad4antr |  |-  ( ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) /\ R =/= t ) -> D e. ran L ) | 
						
							| 58 | 12 | ad4antr |  |-  ( ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) /\ R =/= t ) -> R e. D ) | 
						
							| 59 |  | simpllr |  |-  ( ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) /\ R =/= t ) -> t e. D ) | 
						
							| 60 | 1 3 5 39 41 45 56 56 57 58 59 | tglinethru |  |-  ( ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) /\ R =/= t ) -> D = ( R L t ) ) | 
						
							| 61 | 55 60 | breqtrd |  |-  ( ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) /\ R =/= t ) -> ( C L S ) ( perpG ` G ) ( R L t ) ) | 
						
							| 62 | 1 2 3 5 39 40 47 52 45 61 | perprag |  |-  ( ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) /\ R =/= t ) -> <" C R t "> e. ( raG ` G ) ) | 
						
							| 63 | 1 3 5 7 10 22 23 | tglinerflx2 |  |-  ( ph -> R e. ( A L R ) ) | 
						
							| 64 | 63 | ad4antr |  |-  ( ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) /\ R =/= t ) -> R e. ( A L R ) ) | 
						
							| 65 | 5 7 16 | perpln2 |  |-  ( ph -> ( A L R ) e. ran L ) | 
						
							| 66 | 1 2 3 5 7 6 65 16 | perpcom |  |-  ( ph -> ( A L R ) ( perpG ` G ) D ) | 
						
							| 67 | 66 | ad4antr |  |-  ( ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) /\ R =/= t ) -> ( A L R ) ( perpG ` G ) D ) | 
						
							| 68 | 67 60 | breqtrd |  |-  ( ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) /\ R =/= t ) -> ( A L R ) ( perpG ` G ) ( R L t ) ) | 
						
							| 69 | 1 2 3 5 39 46 41 64 45 68 | perprag |  |-  ( ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) /\ R =/= t ) -> <" A R t "> e. ( raG ` G ) ) | 
						
							| 70 |  | simplr |  |-  ( ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) /\ R =/= t ) -> t e. ( A I C ) ) | 
						
							| 71 | 1 2 3 39 46 45 40 70 | tgbtwncom |  |-  ( ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) /\ R =/= t ) -> t e. ( C I A ) ) | 
						
							| 72 | 1 2 3 5 38 39 40 41 45 46 62 69 71 | ragflat2 |  |-  ( ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) /\ R =/= t ) -> R = t ) | 
						
							| 73 | 37 72 | pm2.61dane |  |-  ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) -> R = t ) | 
						
							| 74 | 10 | ad3antrrr |  |-  ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) -> A e. P ) | 
						
							| 75 | 18 | ad3antrrr |  |-  ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) -> U e. P ) | 
						
							| 76 | 19 | ad3antrrr |  |-  ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) -> V e. P ) | 
						
							| 77 | 22 | ad3antrrr |  |-  ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) -> R e. P ) | 
						
							| 78 | 26 | ad3antrrr |  |-  ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) -> A ( K ` R ) U ) | 
						
							| 79 | 11 | ad3antrrr |  |-  ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) -> C e. P ) | 
						
							| 80 | 21 | ad3antrrr |  |-  ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) -> V ( K ` S ) C ) | 
						
							| 81 | 48 | fveq2d |  |-  ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) -> ( K ` R ) = ( K ` S ) ) | 
						
							| 82 | 81 | breqd |  |-  ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) -> ( V ( K ` R ) C <-> V ( K ` S ) C ) ) | 
						
							| 83 | 80 82 | mpbird |  |-  ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) -> V ( K ` R ) C ) | 
						
							| 84 | 1 3 8 76 79 77 42 83 | hlcomd |  |-  ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) -> C ( K ` R ) V ) | 
						
							| 85 |  | simpr |  |-  ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) -> t e. ( A I C ) ) | 
						
							| 86 | 73 85 | eqeltrd |  |-  ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) -> R e. ( A I C ) ) | 
						
							| 87 | 1 2 3 42 74 77 79 86 | tgbtwncom |  |-  ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) -> R e. ( C I A ) ) | 
						
							| 88 | 1 3 8 79 76 74 42 77 84 87 | btwnhl |  |-  ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) -> R e. ( V I A ) ) | 
						
							| 89 | 1 2 3 42 76 77 74 88 | tgbtwncom |  |-  ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) -> R e. ( A I V ) ) | 
						
							| 90 | 1 3 8 74 75 76 42 77 78 89 | btwnhl |  |-  ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) -> R e. ( U I V ) ) | 
						
							| 91 | 73 90 | eqeltrrd |  |-  ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) -> t e. ( U I V ) ) | 
						
							| 92 |  | rspe |  |-  ( ( t e. D /\ t e. ( U I V ) ) -> E. t e. D t e. ( U I V ) ) | 
						
							| 93 | 36 91 92 | syl2anc |  |-  ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) -> E. t e. D t e. ( U I V ) ) | 
						
							| 94 | 28 35 93 | jca31 |  |-  ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) -> ( ( -. U e. D /\ -. V e. D ) /\ E. t e. D t e. ( U I V ) ) ) | 
						
							| 95 | 1 2 3 4 18 19 | islnopp |  |-  ( ph -> ( U O V <-> ( ( -. U e. D /\ -. V e. D ) /\ E. t e. D t e. ( U I V ) ) ) ) | 
						
							| 96 | 95 | ad3antrrr |  |-  ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) -> ( U O V <-> ( ( -. U e. D /\ -. V e. D ) /\ E. t e. D t e. ( U I V ) ) ) ) | 
						
							| 97 | 94 96 | mpbird |  |-  ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) -> U O V ) | 
						
							| 98 | 1 2 3 4 10 11 | islnopp |  |-  ( ph -> ( A O C <-> ( ( -. A e. D /\ -. C e. D ) /\ E. t e. D t e. ( A I C ) ) ) ) | 
						
							| 99 | 15 98 | mpbid |  |-  ( ph -> ( ( -. A e. D /\ -. C e. D ) /\ E. t e. D t e. ( A I C ) ) ) | 
						
							| 100 | 99 | simprd |  |-  ( ph -> E. t e. D t e. ( A I C ) ) | 
						
							| 101 | 100 | adantr |  |-  ( ( ph /\ R = S ) -> E. t e. D t e. ( A I C ) ) | 
						
							| 102 | 97 101 | r19.29a |  |-  ( ( ph /\ R = S ) -> U O V ) | 
						
							| 103 | 6 | ad4antr |  |-  ( ( ( ( ( ph /\ R =/= S ) /\ m e. P ) /\ S = ( ( ( pInvG ` G ) ` m ) ` R ) ) /\ ( S .- C ) ( leG ` G ) ( R .- A ) ) -> D e. ran L ) | 
						
							| 104 | 7 | ad4antr |  |-  ( ( ( ( ( ph /\ R =/= S ) /\ m e. P ) /\ S = ( ( ( pInvG ` G ) ` m ) ` R ) ) /\ ( S .- C ) ( leG ` G ) ( R .- A ) ) -> G e. TarskiG ) | 
						
							| 105 |  | eqid |  |-  ( ( pInvG ` G ) ` m ) = ( ( pInvG ` G ) ` m ) | 
						
							| 106 | 10 | ad4antr |  |-  ( ( ( ( ( ph /\ R =/= S ) /\ m e. P ) /\ S = ( ( ( pInvG ` G ) ` m ) ` R ) ) /\ ( S .- C ) ( leG ` G ) ( R .- A ) ) -> A e. P ) | 
						
							| 107 | 11 | ad4antr |  |-  ( ( ( ( ( ph /\ R =/= S ) /\ m e. P ) /\ S = ( ( ( pInvG ` G ) ` m ) ` R ) ) /\ ( S .- C ) ( leG ` G ) ( R .- A ) ) -> C e. P ) | 
						
							| 108 | 12 | ad4antr |  |-  ( ( ( ( ( ph /\ R =/= S ) /\ m e. P ) /\ S = ( ( ( pInvG ` G ) ` m ) ` R ) ) /\ ( S .- C ) ( leG ` G ) ( R .- A ) ) -> R e. D ) | 
						
							| 109 | 13 | ad4antr |  |-  ( ( ( ( ( ph /\ R =/= S ) /\ m e. P ) /\ S = ( ( ( pInvG ` G ) ` m ) ` R ) ) /\ ( S .- C ) ( leG ` G ) ( R .- A ) ) -> S e. D ) | 
						
							| 110 |  | simpllr |  |-  ( ( ( ( ( ph /\ R =/= S ) /\ m e. P ) /\ S = ( ( ( pInvG ` G ) ` m ) ` R ) ) /\ ( S .- C ) ( leG ` G ) ( R .- A ) ) -> m e. P ) | 
						
							| 111 | 15 | ad4antr |  |-  ( ( ( ( ( ph /\ R =/= S ) /\ m e. P ) /\ S = ( ( ( pInvG ` G ) ` m ) ` R ) ) /\ ( S .- C ) ( leG ` G ) ( R .- A ) ) -> A O C ) | 
						
							| 112 | 16 | ad4antr |  |-  ( ( ( ( ( ph /\ R =/= S ) /\ m e. P ) /\ S = ( ( ( pInvG ` G ) ` m ) ` R ) ) /\ ( S .- C ) ( leG ` G ) ( R .- A ) ) -> D ( perpG ` G ) ( A L R ) ) | 
						
							| 113 | 17 | ad4antr |  |-  ( ( ( ( ( ph /\ R =/= S ) /\ m e. P ) /\ S = ( ( ( pInvG ` G ) ` m ) ` R ) ) /\ ( S .- C ) ( leG ` G ) ( R .- A ) ) -> D ( perpG ` G ) ( C L S ) ) | 
						
							| 114 |  | simpr |  |-  ( ( ph /\ R =/= S ) -> R =/= S ) | 
						
							| 115 | 114 | ad3antrrr |  |-  ( ( ( ( ( ph /\ R =/= S ) /\ m e. P ) /\ S = ( ( ( pInvG ` G ) ` m ) ` R ) ) /\ ( S .- C ) ( leG ` G ) ( R .- A ) ) -> R =/= S ) | 
						
							| 116 |  | simpr |  |-  ( ( ( ( ( ph /\ R =/= S ) /\ m e. P ) /\ S = ( ( ( pInvG ` G ) ` m ) ` R ) ) /\ ( S .- C ) ( leG ` G ) ( R .- A ) ) -> ( S .- C ) ( leG ` G ) ( R .- A ) ) | 
						
							| 117 | 18 | ad4antr |  |-  ( ( ( ( ( ph /\ R =/= S ) /\ m e. P ) /\ S = ( ( ( pInvG ` G ) ` m ) ` R ) ) /\ ( S .- C ) ( leG ` G ) ( R .- A ) ) -> U e. P ) | 
						
							| 118 |  | simplr |  |-  ( ( ( ( ( ph /\ R =/= S ) /\ m e. P ) /\ S = ( ( ( pInvG ` G ) ` m ) ` R ) ) /\ ( S .- C ) ( leG ` G ) ( R .- A ) ) -> S = ( ( ( pInvG ` G ) ` m ) ` R ) ) | 
						
							| 119 | 118 | eqcomd |  |-  ( ( ( ( ( ph /\ R =/= S ) /\ m e. P ) /\ S = ( ( ( pInvG ` G ) ` m ) ` R ) ) /\ ( S .- C ) ( leG ` G ) ( R .- A ) ) -> ( ( ( pInvG ` G ) ` m ) ` R ) = S ) | 
						
							| 120 | 19 | ad4antr |  |-  ( ( ( ( ( ph /\ R =/= S ) /\ m e. P ) /\ S = ( ( ( pInvG ` G ) ` m ) ` R ) ) /\ ( S .- C ) ( leG ` G ) ( R .- A ) ) -> V e. P ) | 
						
							| 121 | 20 | ad4antr |  |-  ( ( ( ( ( ph /\ R =/= S ) /\ m e. P ) /\ S = ( ( ( pInvG ` G ) ` m ) ` R ) ) /\ ( S .- C ) ( leG ` G ) ( R .- A ) ) -> U ( K ` R ) A ) | 
						
							| 122 | 21 | ad4antr |  |-  ( ( ( ( ( ph /\ R =/= S ) /\ m e. P ) /\ S = ( ( ( pInvG ` G ) ` m ) ` R ) ) /\ ( S .- C ) ( leG ` G ) ( R .- A ) ) -> V ( K ` S ) C ) | 
						
							| 123 | 1 2 3 4 5 103 104 8 105 106 107 108 109 110 111 112 113 115 116 117 119 120 121 122 | opphllem4 |  |-  ( ( ( ( ( ph /\ R =/= S ) /\ m e. P ) /\ S = ( ( ( pInvG ` G ) ` m ) ` R ) ) /\ ( S .- C ) ( leG ` G ) ( R .- A ) ) -> U O V ) | 
						
							| 124 | 6 | ad4antr |  |-  ( ( ( ( ( ph /\ R =/= S ) /\ m e. P ) /\ S = ( ( ( pInvG ` G ) ` m ) ` R ) ) /\ ( R .- A ) ( leG ` G ) ( S .- C ) ) -> D e. ran L ) | 
						
							| 125 | 7 | ad4antr |  |-  ( ( ( ( ( ph /\ R =/= S ) /\ m e. P ) /\ S = ( ( ( pInvG ` G ) ` m ) ` R ) ) /\ ( R .- A ) ( leG ` G ) ( S .- C ) ) -> G e. TarskiG ) | 
						
							| 126 | 19 | ad4antr |  |-  ( ( ( ( ( ph /\ R =/= S ) /\ m e. P ) /\ S = ( ( ( pInvG ` G ) ` m ) ` R ) ) /\ ( R .- A ) ( leG ` G ) ( S .- C ) ) -> V e. P ) | 
						
							| 127 | 18 | ad4antr |  |-  ( ( ( ( ( ph /\ R =/= S ) /\ m e. P ) /\ S = ( ( ( pInvG ` G ) ` m ) ` R ) ) /\ ( R .- A ) ( leG ` G ) ( S .- C ) ) -> U e. P ) | 
						
							| 128 | 11 | ad4antr |  |-  ( ( ( ( ( ph /\ R =/= S ) /\ m e. P ) /\ S = ( ( ( pInvG ` G ) ` m ) ` R ) ) /\ ( R .- A ) ( leG ` G ) ( S .- C ) ) -> C e. P ) | 
						
							| 129 | 10 | ad4antr |  |-  ( ( ( ( ( ph /\ R =/= S ) /\ m e. P ) /\ S = ( ( ( pInvG ` G ) ` m ) ` R ) ) /\ ( R .- A ) ( leG ` G ) ( S .- C ) ) -> A e. P ) | 
						
							| 130 | 13 | ad4antr |  |-  ( ( ( ( ( ph /\ R =/= S ) /\ m e. P ) /\ S = ( ( ( pInvG ` G ) ` m ) ` R ) ) /\ ( R .- A ) ( leG ` G ) ( S .- C ) ) -> S e. D ) | 
						
							| 131 | 12 | ad4antr |  |-  ( ( ( ( ( ph /\ R =/= S ) /\ m e. P ) /\ S = ( ( ( pInvG ` G ) ` m ) ` R ) ) /\ ( R .- A ) ( leG ` G ) ( S .- C ) ) -> R e. D ) | 
						
							| 132 |  | simpllr |  |-  ( ( ( ( ( ph /\ R =/= S ) /\ m e. P ) /\ S = ( ( ( pInvG ` G ) ` m ) ` R ) ) /\ ( R .- A ) ( leG ` G ) ( S .- C ) ) -> m e. P ) | 
						
							| 133 | 15 | ad4antr |  |-  ( ( ( ( ( ph /\ R =/= S ) /\ m e. P ) /\ S = ( ( ( pInvG ` G ) ` m ) ` R ) ) /\ ( R .- A ) ( leG ` G ) ( S .- C ) ) -> A O C ) | 
						
							| 134 | 1 2 3 4 5 124 125 129 128 133 | oppcom |  |-  ( ( ( ( ( ph /\ R =/= S ) /\ m e. P ) /\ S = ( ( ( pInvG ` G ) ` m ) ` R ) ) /\ ( R .- A ) ( leG ` G ) ( S .- C ) ) -> C O A ) | 
						
							| 135 | 17 | ad4antr |  |-  ( ( ( ( ( ph /\ R =/= S ) /\ m e. P ) /\ S = ( ( ( pInvG ` G ) ` m ) ` R ) ) /\ ( R .- A ) ( leG ` G ) ( S .- C ) ) -> D ( perpG ` G ) ( C L S ) ) | 
						
							| 136 | 16 | ad4antr |  |-  ( ( ( ( ( ph /\ R =/= S ) /\ m e. P ) /\ S = ( ( ( pInvG ` G ) ` m ) ` R ) ) /\ ( R .- A ) ( leG ` G ) ( S .- C ) ) -> D ( perpG ` G ) ( A L R ) ) | 
						
							| 137 | 114 | necomd |  |-  ( ( ph /\ R =/= S ) -> S =/= R ) | 
						
							| 138 | 137 | ad3antrrr |  |-  ( ( ( ( ( ph /\ R =/= S ) /\ m e. P ) /\ S = ( ( ( pInvG ` G ) ` m ) ` R ) ) /\ ( R .- A ) ( leG ` G ) ( S .- C ) ) -> S =/= R ) | 
						
							| 139 |  | simpr |  |-  ( ( ( ( ( ph /\ R =/= S ) /\ m e. P ) /\ S = ( ( ( pInvG ` G ) ` m ) ` R ) ) /\ ( R .- A ) ( leG ` G ) ( S .- C ) ) -> ( R .- A ) ( leG ` G ) ( S .- C ) ) | 
						
							| 140 | 22 | ad4antr |  |-  ( ( ( ( ( ph /\ R =/= S ) /\ m e. P ) /\ S = ( ( ( pInvG ` G ) ` m ) ` R ) ) /\ ( R .- A ) ( leG ` G ) ( S .- C ) ) -> R e. P ) | 
						
							| 141 |  | simplr |  |-  ( ( ( ( ( ph /\ R =/= S ) /\ m e. P ) /\ S = ( ( ( pInvG ` G ) ` m ) ` R ) ) /\ ( R .- A ) ( leG ` G ) ( S .- C ) ) -> S = ( ( ( pInvG ` G ) ` m ) ` R ) ) | 
						
							| 142 | 141 | eqcomd |  |-  ( ( ( ( ( ph /\ R =/= S ) /\ m e. P ) /\ S = ( ( ( pInvG ` G ) ` m ) ` R ) ) /\ ( R .- A ) ( leG ` G ) ( S .- C ) ) -> ( ( ( pInvG ` G ) ` m ) ` R ) = S ) | 
						
							| 143 | 1 2 3 5 38 125 132 105 140 142 | mircom |  |-  ( ( ( ( ( ph /\ R =/= S ) /\ m e. P ) /\ S = ( ( ( pInvG ` G ) ` m ) ` R ) ) /\ ( R .- A ) ( leG ` G ) ( S .- C ) ) -> ( ( ( pInvG ` G ) ` m ) ` S ) = R ) | 
						
							| 144 | 21 | ad4antr |  |-  ( ( ( ( ( ph /\ R =/= S ) /\ m e. P ) /\ S = ( ( ( pInvG ` G ) ` m ) ` R ) ) /\ ( R .- A ) ( leG ` G ) ( S .- C ) ) -> V ( K ` S ) C ) | 
						
							| 145 | 20 | ad4antr |  |-  ( ( ( ( ( ph /\ R =/= S ) /\ m e. P ) /\ S = ( ( ( pInvG ` G ) ` m ) ` R ) ) /\ ( R .- A ) ( leG ` G ) ( S .- C ) ) -> U ( K ` R ) A ) | 
						
							| 146 | 1 2 3 4 5 124 125 8 105 128 129 130 131 132 134 135 136 138 139 126 143 127 144 145 | opphllem4 |  |-  ( ( ( ( ( ph /\ R =/= S ) /\ m e. P ) /\ S = ( ( ( pInvG ` G ) ` m ) ` R ) ) /\ ( R .- A ) ( leG ` G ) ( S .- C ) ) -> V O U ) | 
						
							| 147 | 1 2 3 4 5 124 125 126 127 146 | oppcom |  |-  ( ( ( ( ( ph /\ R =/= S ) /\ m e. P ) /\ S = ( ( ( pInvG ` G ) ` m ) ` R ) ) /\ ( R .- A ) ( leG ` G ) ( S .- C ) ) -> U O V ) | 
						
							| 148 |  | eqid |  |-  ( leG ` G ) = ( leG ` G ) | 
						
							| 149 | 1 2 3 148 7 29 11 22 10 | legtrid |  |-  ( ph -> ( ( S .- C ) ( leG ` G ) ( R .- A ) \/ ( R .- A ) ( leG ` G ) ( S .- C ) ) ) | 
						
							| 150 | 149 | ad3antrrr |  |-  ( ( ( ( ph /\ R =/= S ) /\ m e. P ) /\ S = ( ( ( pInvG ` G ) ` m ) ` R ) ) -> ( ( S .- C ) ( leG ` G ) ( R .- A ) \/ ( R .- A ) ( leG ` G ) ( S .- C ) ) ) | 
						
							| 151 | 123 147 150 | mpjaodan |  |-  ( ( ( ( ph /\ R =/= S ) /\ m e. P ) /\ S = ( ( ( pInvG ` G ) ` m ) ` R ) ) -> U O V ) | 
						
							| 152 | 7 | adantr |  |-  ( ( ph /\ R =/= S ) -> G e. TarskiG ) | 
						
							| 153 | 22 | adantr |  |-  ( ( ph /\ R =/= S ) -> R e. P ) | 
						
							| 154 | 29 | adantr |  |-  ( ( ph /\ R =/= S ) -> S e. P ) | 
						
							| 155 | 1 2 3 4 5 6 7 10 11 15 | opptgdim2 |  |-  ( ph -> G TarskiGDim>= 2 ) | 
						
							| 156 | 155 | adantr |  |-  ( ( ph /\ R =/= S ) -> G TarskiGDim>= 2 ) | 
						
							| 157 | 1 2 3 5 152 38 153 154 156 | midex |  |-  ( ( ph /\ R =/= S ) -> E. m e. P S = ( ( ( pInvG ` G ) ` m ) ` R ) ) | 
						
							| 158 | 151 157 | r19.29a |  |-  ( ( ph /\ R =/= S ) -> U O V ) | 
						
							| 159 | 102 158 | pm2.61dane |  |-  ( ph -> U O V ) |