| Step |
Hyp |
Ref |
Expression |
| 1 |
|
israg.p |
|- P = ( Base ` G ) |
| 2 |
|
israg.d |
|- .- = ( dist ` G ) |
| 3 |
|
israg.i |
|- I = ( Itv ` G ) |
| 4 |
|
israg.l |
|- L = ( LineG ` G ) |
| 5 |
|
israg.s |
|- S = ( pInvG ` G ) |
| 6 |
|
israg.g |
|- ( ph -> G e. TarskiG ) |
| 7 |
|
israg.a |
|- ( ph -> A e. P ) |
| 8 |
|
israg.b |
|- ( ph -> B e. P ) |
| 9 |
|
israg.c |
|- ( ph -> C e. P ) |
| 10 |
|
ragflat2.d |
|- ( ph -> D e. P ) |
| 11 |
|
ragflat2.1 |
|- ( ph -> <" A B C "> e. ( raG ` G ) ) |
| 12 |
|
ragflat2.2 |
|- ( ph -> <" D B C "> e. ( raG ` G ) ) |
| 13 |
|
ragflat2.3 |
|- ( ph -> C e. ( A I D ) ) |
| 14 |
|
eqid |
|- ( cgrG ` G ) = ( cgrG ` G ) |
| 15 |
|
eqid |
|- ( S ` B ) = ( S ` B ) |
| 16 |
1 2 3 4 5 6 8 15 9
|
mircl |
|- ( ph -> ( ( S ` B ) ` C ) e. P ) |
| 17 |
1 2 3 4 5 6 7 8 9
|
israg |
|- ( ph -> ( <" A B C "> e. ( raG ` G ) <-> ( A .- C ) = ( A .- ( ( S ` B ) ` C ) ) ) ) |
| 18 |
11 17
|
mpbid |
|- ( ph -> ( A .- C ) = ( A .- ( ( S ` B ) ` C ) ) ) |
| 19 |
1 2 3 4 5 6 10 8 9
|
israg |
|- ( ph -> ( <" D B C "> e. ( raG ` G ) <-> ( D .- C ) = ( D .- ( ( S ` B ) ` C ) ) ) ) |
| 20 |
12 19
|
mpbid |
|- ( ph -> ( D .- C ) = ( D .- ( ( S ` B ) ` C ) ) ) |
| 21 |
1 4 3 6 7 10 9 14 16 7 2 13 18 20
|
tgidinside |
|- ( ph -> C = ( ( S ` B ) ` C ) ) |
| 22 |
21
|
eqcomd |
|- ( ph -> ( ( S ` B ) ` C ) = C ) |
| 23 |
1 2 3 4 5 6 8 15 9
|
mirinv |
|- ( ph -> ( ( ( S ` B ) ` C ) = C <-> B = C ) ) |
| 24 |
22 23
|
mpbid |
|- ( ph -> B = C ) |