Step |
Hyp |
Ref |
Expression |
1 |
|
israg.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
israg.d |
⊢ − = ( dist ‘ 𝐺 ) |
3 |
|
israg.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
4 |
|
israg.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
5 |
|
israg.s |
⊢ 𝑆 = ( pInvG ‘ 𝐺 ) |
6 |
|
israg.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
7 |
|
israg.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
8 |
|
israg.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
9 |
|
israg.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
10 |
|
ragflat2.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑃 ) |
11 |
|
ragflat2.1 |
⊢ ( 𝜑 → 〈“ 𝐴 𝐵 𝐶 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
12 |
|
ragflat2.2 |
⊢ ( 𝜑 → 〈“ 𝐷 𝐵 𝐶 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
13 |
|
ragflat2.3 |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝐴 𝐼 𝐷 ) ) |
14 |
|
eqid |
⊢ ( cgrG ‘ 𝐺 ) = ( cgrG ‘ 𝐺 ) |
15 |
|
eqid |
⊢ ( 𝑆 ‘ 𝐵 ) = ( 𝑆 ‘ 𝐵 ) |
16 |
1 2 3 4 5 6 8 15 9
|
mircl |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐶 ) ∈ 𝑃 ) |
17 |
1 2 3 4 5 6 7 8 9
|
israg |
⊢ ( 𝜑 → ( 〈“ 𝐴 𝐵 𝐶 ”〉 ∈ ( ∟G ‘ 𝐺 ) ↔ ( 𝐴 − 𝐶 ) = ( 𝐴 − ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐶 ) ) ) ) |
18 |
11 17
|
mpbid |
⊢ ( 𝜑 → ( 𝐴 − 𝐶 ) = ( 𝐴 − ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐶 ) ) ) |
19 |
1 2 3 4 5 6 10 8 9
|
israg |
⊢ ( 𝜑 → ( 〈“ 𝐷 𝐵 𝐶 ”〉 ∈ ( ∟G ‘ 𝐺 ) ↔ ( 𝐷 − 𝐶 ) = ( 𝐷 − ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐶 ) ) ) ) |
20 |
12 19
|
mpbid |
⊢ ( 𝜑 → ( 𝐷 − 𝐶 ) = ( 𝐷 − ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐶 ) ) ) |
21 |
1 4 3 6 7 10 9 14 16 7 2 13 18 20
|
tgidinside |
⊢ ( 𝜑 → 𝐶 = ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐶 ) ) |
22 |
21
|
eqcomd |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐶 ) = 𝐶 ) |
23 |
1 2 3 4 5 6 8 15 9
|
mirinv |
⊢ ( 𝜑 → ( ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐶 ) = 𝐶 ↔ 𝐵 = 𝐶 ) ) |
24 |
22 23
|
mpbid |
⊢ ( 𝜑 → 𝐵 = 𝐶 ) |