Metamath Proof Explorer


Theorem opphllem5

Description: Second part of Lemma 9.4 of Schwabhauser p. 68. (Contributed by Thierry Arnoux, 2-Mar-2020)

Ref Expression
Hypotheses hpg.p P=BaseG
hpg.d -˙=distG
hpg.i I=ItvG
hpg.o O=ab|aPDbPDtDtaIb
opphl.l L=Line𝒢G
opphl.d φDranL
opphl.g φG𝒢Tarski
opphl.k K=hl𝒢G
opphllem5.n N=pInv𝒢GM
opphllem5.a φAP
opphllem5.c φCP
opphllem5.r φRD
opphllem5.s φSD
opphllem5.m φMP
opphllem5.o φAOC
opphllem5.p φD𝒢GALR
opphllem5.q φD𝒢GCLS
opphllem5.u φUP
opphllem5.v φVP
opphllem5.1 φUKRA
opphllem5.2 φVKSC
Assertion opphllem5 φUOV

Proof

Step Hyp Ref Expression
1 hpg.p P=BaseG
2 hpg.d -˙=distG
3 hpg.i I=ItvG
4 hpg.o O=ab|aPDbPDtDtaIb
5 opphl.l L=Line𝒢G
6 opphl.d φDranL
7 opphl.g φG𝒢Tarski
8 opphl.k K=hl𝒢G
9 opphllem5.n N=pInv𝒢GM
10 opphllem5.a φAP
11 opphllem5.c φCP
12 opphllem5.r φRD
13 opphllem5.s φSD
14 opphllem5.m φMP
15 opphllem5.o φAOC
16 opphllem5.p φD𝒢GALR
17 opphllem5.q φD𝒢GCLS
18 opphllem5.u φUP
19 opphllem5.v φVP
20 opphllem5.1 φUKRA
21 opphllem5.2 φVKSC
22 1 5 3 7 6 12 tglnpt φRP
23 1 3 8 18 10 22 7 20 hlne2 φAR
24 1 3 5 7 10 22 23 tglinecom φALR=RLA
25 16 24 breqtrd φD𝒢GRLA
26 1 3 8 18 10 22 7 20 hlcomd φAKRU
27 1 2 3 5 7 6 8 12 10 18 25 26 hlperpnel φ¬UD
28 27 ad3antrrr φR=StDtAIC¬UD
29 1 5 3 7 6 13 tglnpt φSP
30 1 3 8 19 11 29 7 21 hlne2 φCS
31 1 3 5 7 11 29 30 tglinecom φCLS=SLC
32 17 31 breqtrd φD𝒢GSLC
33 1 3 8 19 11 29 7 21 hlcomd φCKSV
34 1 2 3 5 7 6 8 13 11 19 32 33 hlperpnel φ¬VD
35 34 ad3antrrr φR=StDtAIC¬VD
36 simplr φR=StDtAICtD
37 simpr φR=StDtAICR=tR=t
38 eqid pInv𝒢G=pInv𝒢G
39 7 ad4antr φR=StDtAICRtG𝒢Tarski
40 11 ad4antr φR=StDtAICRtCP
41 22 ad4antr φR=StDtAICRtRP
42 7 ad3antrrr φR=StDtAICG𝒢Tarski
43 6 ad3antrrr φR=StDtAICDranL
44 1 5 3 42 43 36 tglnpt φR=StDtAICtP
45 44 adantr φR=StDtAICRttP
46 10 ad4antr φR=StDtAICRtAP
47 29 ad4antr φR=StDtAICRtSP
48 simpllr φR=StDtAICR=S
49 1 3 5 7 11 29 30 tglinerflx2 φSCLS
50 49 ad3antrrr φR=StDtAICSCLS
51 48 50 eqeltrd φR=StDtAICRCLS
52 51 adantr φR=StDtAICRtRCLS
53 5 7 17 perpln2 φCLSranL
54 1 2 3 5 7 6 53 17 perpcom φCLS𝒢GD
55 54 ad4antr φR=StDtAICRtCLS𝒢GD
56 simpr φR=StDtAICRtRt
57 6 ad4antr φR=StDtAICRtDranL
58 12 ad4antr φR=StDtAICRtRD
59 simpllr φR=StDtAICRttD
60 1 3 5 39 41 45 56 56 57 58 59 tglinethru φR=StDtAICRtD=RLt
61 55 60 breqtrd φR=StDtAICRtCLS𝒢GRLt
62 1 2 3 5 39 40 47 52 45 61 perprag φR=StDtAICRt⟨“CRt”⟩𝒢G
63 1 3 5 7 10 22 23 tglinerflx2 φRALR
64 63 ad4antr φR=StDtAICRtRALR
65 5 7 16 perpln2 φALRranL
66 1 2 3 5 7 6 65 16 perpcom φALR𝒢GD
67 66 ad4antr φR=StDtAICRtALR𝒢GD
68 67 60 breqtrd φR=StDtAICRtALR𝒢GRLt
69 1 2 3 5 39 46 41 64 45 68 perprag φR=StDtAICRt⟨“ARt”⟩𝒢G
70 simplr φR=StDtAICRttAIC
71 1 2 3 39 46 45 40 70 tgbtwncom φR=StDtAICRttCIA
72 1 2 3 5 38 39 40 41 45 46 62 69 71 ragflat2 φR=StDtAICRtR=t
73 37 72 pm2.61dane φR=StDtAICR=t
74 10 ad3antrrr φR=StDtAICAP
75 18 ad3antrrr φR=StDtAICUP
76 19 ad3antrrr φR=StDtAICVP
77 22 ad3antrrr φR=StDtAICRP
78 26 ad3antrrr φR=StDtAICAKRU
79 11 ad3antrrr φR=StDtAICCP
80 21 ad3antrrr φR=StDtAICVKSC
81 48 fveq2d φR=StDtAICKR=KS
82 81 breqd φR=StDtAICVKRCVKSC
83 80 82 mpbird φR=StDtAICVKRC
84 1 3 8 76 79 77 42 83 hlcomd φR=StDtAICCKRV
85 simpr φR=StDtAICtAIC
86 73 85 eqeltrd φR=StDtAICRAIC
87 1 2 3 42 74 77 79 86 tgbtwncom φR=StDtAICRCIA
88 1 3 8 79 76 74 42 77 84 87 btwnhl φR=StDtAICRVIA
89 1 2 3 42 76 77 74 88 tgbtwncom φR=StDtAICRAIV
90 1 3 8 74 75 76 42 77 78 89 btwnhl φR=StDtAICRUIV
91 73 90 eqeltrrd φR=StDtAICtUIV
92 rspe tDtUIVtDtUIV
93 36 91 92 syl2anc φR=StDtAICtDtUIV
94 28 35 93 jca31 φR=StDtAIC¬UD¬VDtDtUIV
95 1 2 3 4 18 19 islnopp φUOV¬UD¬VDtDtUIV
96 95 ad3antrrr φR=StDtAICUOV¬UD¬VDtDtUIV
97 94 96 mpbird φR=StDtAICUOV
98 1 2 3 4 10 11 islnopp φAOC¬AD¬CDtDtAIC
99 15 98 mpbid φ¬AD¬CDtDtAIC
100 99 simprd φtDtAIC
101 100 adantr φR=StDtAIC
102 97 101 r19.29a φR=SUOV
103 6 ad4antr φRSmPS=pInv𝒢GmRS-˙C𝒢GR-˙ADranL
104 7 ad4antr φRSmPS=pInv𝒢GmRS-˙C𝒢GR-˙AG𝒢Tarski
105 eqid pInv𝒢Gm=pInv𝒢Gm
106 10 ad4antr φRSmPS=pInv𝒢GmRS-˙C𝒢GR-˙AAP
107 11 ad4antr φRSmPS=pInv𝒢GmRS-˙C𝒢GR-˙ACP
108 12 ad4antr φRSmPS=pInv𝒢GmRS-˙C𝒢GR-˙ARD
109 13 ad4antr φRSmPS=pInv𝒢GmRS-˙C𝒢GR-˙ASD
110 simpllr φRSmPS=pInv𝒢GmRS-˙C𝒢GR-˙AmP
111 15 ad4antr φRSmPS=pInv𝒢GmRS-˙C𝒢GR-˙AAOC
112 16 ad4antr φRSmPS=pInv𝒢GmRS-˙C𝒢GR-˙AD𝒢GALR
113 17 ad4antr φRSmPS=pInv𝒢GmRS-˙C𝒢GR-˙AD𝒢GCLS
114 simpr φRSRS
115 114 ad3antrrr φRSmPS=pInv𝒢GmRS-˙C𝒢GR-˙ARS
116 simpr φRSmPS=pInv𝒢GmRS-˙C𝒢GR-˙AS-˙C𝒢GR-˙A
117 18 ad4antr φRSmPS=pInv𝒢GmRS-˙C𝒢GR-˙AUP
118 simplr φRSmPS=pInv𝒢GmRS-˙C𝒢GR-˙AS=pInv𝒢GmR
119 118 eqcomd φRSmPS=pInv𝒢GmRS-˙C𝒢GR-˙ApInv𝒢GmR=S
120 19 ad4antr φRSmPS=pInv𝒢GmRS-˙C𝒢GR-˙AVP
121 20 ad4antr φRSmPS=pInv𝒢GmRS-˙C𝒢GR-˙AUKRA
122 21 ad4antr φRSmPS=pInv𝒢GmRS-˙C𝒢GR-˙AVKSC
123 1 2 3 4 5 103 104 8 105 106 107 108 109 110 111 112 113 115 116 117 119 120 121 122 opphllem4 φRSmPS=pInv𝒢GmRS-˙C𝒢GR-˙AUOV
124 6 ad4antr φRSmPS=pInv𝒢GmRR-˙A𝒢GS-˙CDranL
125 7 ad4antr φRSmPS=pInv𝒢GmRR-˙A𝒢GS-˙CG𝒢Tarski
126 19 ad4antr φRSmPS=pInv𝒢GmRR-˙A𝒢GS-˙CVP
127 18 ad4antr φRSmPS=pInv𝒢GmRR-˙A𝒢GS-˙CUP
128 11 ad4antr φRSmPS=pInv𝒢GmRR-˙A𝒢GS-˙CCP
129 10 ad4antr φRSmPS=pInv𝒢GmRR-˙A𝒢GS-˙CAP
130 13 ad4antr φRSmPS=pInv𝒢GmRR-˙A𝒢GS-˙CSD
131 12 ad4antr φRSmPS=pInv𝒢GmRR-˙A𝒢GS-˙CRD
132 simpllr φRSmPS=pInv𝒢GmRR-˙A𝒢GS-˙CmP
133 15 ad4antr φRSmPS=pInv𝒢GmRR-˙A𝒢GS-˙CAOC
134 1 2 3 4 5 124 125 129 128 133 oppcom φRSmPS=pInv𝒢GmRR-˙A𝒢GS-˙CCOA
135 17 ad4antr φRSmPS=pInv𝒢GmRR-˙A𝒢GS-˙CD𝒢GCLS
136 16 ad4antr φRSmPS=pInv𝒢GmRR-˙A𝒢GS-˙CD𝒢GALR
137 114 necomd φRSSR
138 137 ad3antrrr φRSmPS=pInv𝒢GmRR-˙A𝒢GS-˙CSR
139 simpr φRSmPS=pInv𝒢GmRR-˙A𝒢GS-˙CR-˙A𝒢GS-˙C
140 22 ad4antr φRSmPS=pInv𝒢GmRR-˙A𝒢GS-˙CRP
141 simplr φRSmPS=pInv𝒢GmRR-˙A𝒢GS-˙CS=pInv𝒢GmR
142 141 eqcomd φRSmPS=pInv𝒢GmRR-˙A𝒢GS-˙CpInv𝒢GmR=S
143 1 2 3 5 38 125 132 105 140 142 mircom φRSmPS=pInv𝒢GmRR-˙A𝒢GS-˙CpInv𝒢GmS=R
144 21 ad4antr φRSmPS=pInv𝒢GmRR-˙A𝒢GS-˙CVKSC
145 20 ad4antr φRSmPS=pInv𝒢GmRR-˙A𝒢GS-˙CUKRA
146 1 2 3 4 5 124 125 8 105 128 129 130 131 132 134 135 136 138 139 126 143 127 144 145 opphllem4 φRSmPS=pInv𝒢GmRR-˙A𝒢GS-˙CVOU
147 1 2 3 4 5 124 125 126 127 146 oppcom φRSmPS=pInv𝒢GmRR-˙A𝒢GS-˙CUOV
148 eqid 𝒢G=𝒢G
149 1 2 3 148 7 29 11 22 10 legtrid φS-˙C𝒢GR-˙AR-˙A𝒢GS-˙C
150 149 ad3antrrr φRSmPS=pInv𝒢GmRS-˙C𝒢GR-˙AR-˙A𝒢GS-˙C
151 123 147 150 mpjaodan φRSmPS=pInv𝒢GmRUOV
152 7 adantr φRSG𝒢Tarski
153 22 adantr φRSRP
154 29 adantr φRSSP
155 1 2 3 4 5 6 7 10 11 15 opptgdim2 φGDim𝒢2
156 155 adantr φRSGDim𝒢2
157 1 2 3 5 152 38 153 154 156 midex φRSmPS=pInv𝒢GmR
158 151 157 r19.29a φRSUOV
159 102 158 pm2.61dane φUOV