Metamath Proof Explorer


Theorem hlperpnel

Description: A point on a half-line which is perpendicular to a line cannot be on that line. (Contributed by Thierry Arnoux, 1-Mar-2020)

Ref Expression
Hypotheses colperpex.p P=BaseG
colperpex.d -˙=distG
colperpex.i I=ItvG
colperpex.l L=Line𝒢G
colperpex.g φG𝒢Tarski
hlperpnel.a φAranL
hlperpnel.k K=hl𝒢G
hlperpnel.1 φUA
hlperpnel.2 φVP
hlperpnel.3 φWP
hlperpnel.4 φA𝒢GULV
hlperpnel.5 φVKUW
Assertion hlperpnel φ¬WA

Proof

Step Hyp Ref Expression
1 colperpex.p P=BaseG
2 colperpex.d -˙=distG
3 colperpex.i I=ItvG
4 colperpex.l L=Line𝒢G
5 colperpex.g φG𝒢Tarski
6 hlperpnel.a φAranL
7 hlperpnel.k K=hl𝒢G
8 hlperpnel.1 φUA
9 hlperpnel.2 φVP
10 hlperpnel.3 φWP
11 hlperpnel.4 φA𝒢GULV
12 hlperpnel.5 φVKUW
13 1 4 3 5 6 8 tglnpt φUP
14 4 5 11 perpln2 φULVranL
15 1 3 4 5 13 9 14 tglnne φUV
16 1 3 7 9 10 13 5 12 hlne2 φWU
17 1 3 7 9 10 13 5 4 12 hlln φVWLU
18 1 3 4 5 13 9 10 15 17 16 lnrot1 φWULV
19 1 3 4 5 13 9 15 10 16 18 tglineelsb2 φULV=ULW
20 1 2 3 4 5 6 14 11 perpcom φULV𝒢GA
21 19 20 eqbrtrrd φULW𝒢GA
22 1 2 3 4 5 6 8 10 21 footne φ¬WA