| Step | Hyp | Ref | Expression | 
						
							| 1 |  | colperpex.p | ⊢ 𝑃  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | colperpex.d | ⊢  −   =  ( dist ‘ 𝐺 ) | 
						
							| 3 |  | colperpex.i | ⊢ 𝐼  =  ( Itv ‘ 𝐺 ) | 
						
							| 4 |  | colperpex.l | ⊢ 𝐿  =  ( LineG ‘ 𝐺 ) | 
						
							| 5 |  | colperpex.g | ⊢ ( 𝜑  →  𝐺  ∈  TarskiG ) | 
						
							| 6 |  | hlperpnel.a | ⊢ ( 𝜑  →  𝐴  ∈  ran  𝐿 ) | 
						
							| 7 |  | hlperpnel.k | ⊢ 𝐾  =  ( hlG ‘ 𝐺 ) | 
						
							| 8 |  | hlperpnel.1 | ⊢ ( 𝜑  →  𝑈  ∈  𝐴 ) | 
						
							| 9 |  | hlperpnel.2 | ⊢ ( 𝜑  →  𝑉  ∈  𝑃 ) | 
						
							| 10 |  | hlperpnel.3 | ⊢ ( 𝜑  →  𝑊  ∈  𝑃 ) | 
						
							| 11 |  | hlperpnel.4 | ⊢ ( 𝜑  →  𝐴 ( ⟂G ‘ 𝐺 ) ( 𝑈 𝐿 𝑉 ) ) | 
						
							| 12 |  | hlperpnel.5 | ⊢ ( 𝜑  →  𝑉 ( 𝐾 ‘ 𝑈 ) 𝑊 ) | 
						
							| 13 | 1 4 3 5 6 8 | tglnpt | ⊢ ( 𝜑  →  𝑈  ∈  𝑃 ) | 
						
							| 14 | 4 5 11 | perpln2 | ⊢ ( 𝜑  →  ( 𝑈 𝐿 𝑉 )  ∈  ran  𝐿 ) | 
						
							| 15 | 1 3 4 5 13 9 14 | tglnne | ⊢ ( 𝜑  →  𝑈  ≠  𝑉 ) | 
						
							| 16 | 1 3 7 9 10 13 5 12 | hlne2 | ⊢ ( 𝜑  →  𝑊  ≠  𝑈 ) | 
						
							| 17 | 1 3 7 9 10 13 5 4 12 | hlln | ⊢ ( 𝜑  →  𝑉  ∈  ( 𝑊 𝐿 𝑈 ) ) | 
						
							| 18 | 1 3 4 5 13 9 10 15 17 16 | lnrot1 | ⊢ ( 𝜑  →  𝑊  ∈  ( 𝑈 𝐿 𝑉 ) ) | 
						
							| 19 | 1 3 4 5 13 9 15 10 16 18 | tglineelsb2 | ⊢ ( 𝜑  →  ( 𝑈 𝐿 𝑉 )  =  ( 𝑈 𝐿 𝑊 ) ) | 
						
							| 20 | 1 2 3 4 5 6 14 11 | perpcom | ⊢ ( 𝜑  →  ( 𝑈 𝐿 𝑉 ) ( ⟂G ‘ 𝐺 ) 𝐴 ) | 
						
							| 21 | 19 20 | eqbrtrrd | ⊢ ( 𝜑  →  ( 𝑈 𝐿 𝑊 ) ( ⟂G ‘ 𝐺 ) 𝐴 ) | 
						
							| 22 | 1 2 3 4 5 6 8 10 21 | footne | ⊢ ( 𝜑  →  ¬  𝑊  ∈  𝐴 ) |