| Step |
Hyp |
Ref |
Expression |
| 1 |
|
colperpex.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
| 2 |
|
colperpex.d |
⊢ − = ( dist ‘ 𝐺 ) |
| 3 |
|
colperpex.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
| 4 |
|
colperpex.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
| 5 |
|
colperpex.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
| 6 |
|
perprag.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
| 7 |
|
perprag.2 |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
| 8 |
|
perprag.3 |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ) |
| 9 |
|
perprag.4 |
⊢ ( 𝜑 → 𝐷 ∈ 𝑃 ) |
| 10 |
|
perprag.5 |
⊢ ( 𝜑 → ( 𝐴 𝐿 𝐵 ) ( ⟂G ‘ 𝐺 ) ( 𝐶 𝐿 𝐷 ) ) |
| 11 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝐶 = 𝐷 ) → 𝐴 = 𝐴 ) |
| 12 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐶 = 𝐷 ) → 𝐶 = 𝐷 ) |
| 13 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝐶 = 𝐷 ) → 𝐷 = 𝐷 ) |
| 14 |
11 12 13
|
s3eqd |
⊢ ( ( 𝜑 ∧ 𝐶 = 𝐷 ) → 〈“ 𝐴 𝐶 𝐷 ”〉 = 〈“ 𝐴 𝐷 𝐷 ”〉 ) |
| 15 |
|
eqid |
⊢ ( pInvG ‘ 𝐺 ) = ( pInvG ‘ 𝐺 ) |
| 16 |
1 2 3 4 15 5 6 9 9
|
ragtrivb |
⊢ ( 𝜑 → 〈“ 𝐴 𝐷 𝐷 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
| 17 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 = 𝐷 ) → 〈“ 𝐴 𝐷 𝐷 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
| 18 |
14 17
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝐶 = 𝐷 ) → 〈“ 𝐴 𝐶 𝐷 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
| 19 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ≠ 𝐷 ) → 𝐺 ∈ TarskiG ) |
| 20 |
1 4 3 5 6 7 8
|
tglngne |
⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) |
| 21 |
1 3 4 5 6 7 20
|
tgelrnln |
⊢ ( 𝜑 → ( 𝐴 𝐿 𝐵 ) ∈ ran 𝐿 ) |
| 22 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ≠ 𝐷 ) → ( 𝐴 𝐿 𝐵 ) ∈ ran 𝐿 ) |
| 23 |
1 4 3 5 21 8
|
tglnpt |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
| 24 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ≠ 𝐷 ) → 𝐶 ∈ 𝑃 ) |
| 25 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ≠ 𝐷 ) → 𝐷 ∈ 𝑃 ) |
| 26 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐶 ≠ 𝐷 ) → 𝐶 ≠ 𝐷 ) |
| 27 |
1 3 4 19 24 25 26
|
tgelrnln |
⊢ ( ( 𝜑 ∧ 𝐶 ≠ 𝐷 ) → ( 𝐶 𝐿 𝐷 ) ∈ ran 𝐿 ) |
| 28 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ≠ 𝐷 ) → 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ) |
| 29 |
1 3 4 19 24 25 26
|
tglinerflx1 |
⊢ ( ( 𝜑 ∧ 𝐶 ≠ 𝐷 ) → 𝐶 ∈ ( 𝐶 𝐿 𝐷 ) ) |
| 30 |
28 29
|
elind |
⊢ ( ( 𝜑 ∧ 𝐶 ≠ 𝐷 ) → 𝐶 ∈ ( ( 𝐴 𝐿 𝐵 ) ∩ ( 𝐶 𝐿 𝐷 ) ) ) |
| 31 |
1 3 4 5 6 7 20
|
tglinerflx1 |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐴 𝐿 𝐵 ) ) |
| 32 |
31
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ≠ 𝐷 ) → 𝐴 ∈ ( 𝐴 𝐿 𝐵 ) ) |
| 33 |
1 3 4 19 24 25 26
|
tglinerflx2 |
⊢ ( ( 𝜑 ∧ 𝐶 ≠ 𝐷 ) → 𝐷 ∈ ( 𝐶 𝐿 𝐷 ) ) |
| 34 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ≠ 𝐷 ) → ( 𝐴 𝐿 𝐵 ) ( ⟂G ‘ 𝐺 ) ( 𝐶 𝐿 𝐷 ) ) |
| 35 |
1 2 3 4 19 22 27 30 32 33 34
|
isperp2d |
⊢ ( ( 𝜑 ∧ 𝐶 ≠ 𝐷 ) → 〈“ 𝐴 𝐶 𝐷 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
| 36 |
18 35
|
pm2.61dane |
⊢ ( 𝜑 → 〈“ 𝐴 𝐶 𝐷 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |