| Step | Hyp | Ref | Expression | 
						
							| 1 |  | colperpex.p | ⊢ 𝑃  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | colperpex.d | ⊢  −   =  ( dist ‘ 𝐺 ) | 
						
							| 3 |  | colperpex.i | ⊢ 𝐼  =  ( Itv ‘ 𝐺 ) | 
						
							| 4 |  | colperpex.l | ⊢ 𝐿  =  ( LineG ‘ 𝐺 ) | 
						
							| 5 |  | colperpex.g | ⊢ ( 𝜑  →  𝐺  ∈  TarskiG ) | 
						
							| 6 |  | perpdrag.1 | ⊢ ( 𝜑  →  𝐴  ∈  𝐷 ) | 
						
							| 7 |  | perpdrag.2 | ⊢ ( 𝜑  →  𝐵  ∈  𝐷 ) | 
						
							| 8 |  | perpdrag.3 | ⊢ ( 𝜑  →  𝐶  ∈  𝑃 ) | 
						
							| 9 |  | perpdrag.4 | ⊢ ( 𝜑  →  𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐵 𝐿 𝐶 ) ) | 
						
							| 10 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝐴  =  𝐵 )  →  𝐴  =  𝐴 ) | 
						
							| 11 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐴  =  𝐵 )  →  𝐴  =  𝐵 ) | 
						
							| 12 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝐴  =  𝐵 )  →  𝐶  =  𝐶 ) | 
						
							| 13 | 10 11 12 | s3eqd | ⊢ ( ( 𝜑  ∧  𝐴  =  𝐵 )  →  〈“ 𝐴 𝐴 𝐶 ”〉  =  〈“ 𝐴 𝐵 𝐶 ”〉 ) | 
						
							| 14 |  | eqid | ⊢ ( pInvG ‘ 𝐺 )  =  ( pInvG ‘ 𝐺 ) | 
						
							| 15 | 4 5 9 | perpln1 | ⊢ ( 𝜑  →  𝐷  ∈  ran  𝐿 ) | 
						
							| 16 | 1 4 3 5 15 6 | tglnpt | ⊢ ( 𝜑  →  𝐴  ∈  𝑃 ) | 
						
							| 17 | 1 2 3 4 14 5 8 16 8 | ragtrivb | ⊢ ( 𝜑  →  〈“ 𝐶 𝐴 𝐴 ”〉  ∈  ( ∟G ‘ 𝐺 ) ) | 
						
							| 18 | 1 2 3 4 14 5 8 16 16 17 | ragcom | ⊢ ( 𝜑  →  〈“ 𝐴 𝐴 𝐶 ”〉  ∈  ( ∟G ‘ 𝐺 ) ) | 
						
							| 19 | 18 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  =  𝐵 )  →  〈“ 𝐴 𝐴 𝐶 ”〉  ∈  ( ∟G ‘ 𝐺 ) ) | 
						
							| 20 | 13 19 | eqeltrrd | ⊢ ( ( 𝜑  ∧  𝐴  =  𝐵 )  →  〈“ 𝐴 𝐵 𝐶 ”〉  ∈  ( ∟G ‘ 𝐺 ) ) | 
						
							| 21 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ≠  𝐵 )  →  𝐺  ∈  TarskiG ) | 
						
							| 22 | 16 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ≠  𝐵 )  →  𝐴  ∈  𝑃 ) | 
						
							| 23 | 1 4 3 5 15 7 | tglnpt | ⊢ ( 𝜑  →  𝐵  ∈  𝑃 ) | 
						
							| 24 | 23 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ≠  𝐵 )  →  𝐵  ∈  𝑃 ) | 
						
							| 25 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ≠  𝐵 )  →  𝐵  ∈  𝐷 ) | 
						
							| 26 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐴  ≠  𝐵 )  →  𝐴  ≠  𝐵 ) | 
						
							| 27 | 15 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ≠  𝐵 )  →  𝐷  ∈  ran  𝐿 ) | 
						
							| 28 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ≠  𝐵 )  →  𝐴  ∈  𝐷 ) | 
						
							| 29 | 1 3 4 21 22 24 26 26 27 28 25 | tglinethru | ⊢ ( ( 𝜑  ∧  𝐴  ≠  𝐵 )  →  𝐷  =  ( 𝐴 𝐿 𝐵 ) ) | 
						
							| 30 | 25 29 | eleqtrd | ⊢ ( ( 𝜑  ∧  𝐴  ≠  𝐵 )  →  𝐵  ∈  ( 𝐴 𝐿 𝐵 ) ) | 
						
							| 31 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ≠  𝐵 )  →  𝐶  ∈  𝑃 ) | 
						
							| 32 | 9 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ≠  𝐵 )  →  𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐵 𝐿 𝐶 ) ) | 
						
							| 33 | 29 32 | eqbrtrrd | ⊢ ( ( 𝜑  ∧  𝐴  ≠  𝐵 )  →  ( 𝐴 𝐿 𝐵 ) ( ⟂G ‘ 𝐺 ) ( 𝐵 𝐿 𝐶 ) ) | 
						
							| 34 | 1 2 3 4 21 22 24 30 31 33 | perprag | ⊢ ( ( 𝜑  ∧  𝐴  ≠  𝐵 )  →  〈“ 𝐴 𝐵 𝐶 ”〉  ∈  ( ∟G ‘ 𝐺 ) ) | 
						
							| 35 | 20 34 | pm2.61dane | ⊢ ( 𝜑  →  〈“ 𝐴 𝐵 𝐶 ”〉  ∈  ( ∟G ‘ 𝐺 ) ) |