Metamath Proof Explorer


Theorem perpdragALT

Description: Deduce a right angle from perpendicular lines. (Contributed by Thierry Arnoux, 12-Dec-2019) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses colperpex.p 𝑃 = ( Base ‘ 𝐺 )
colperpex.d = ( dist ‘ 𝐺 )
colperpex.i 𝐼 = ( Itv ‘ 𝐺 )
colperpex.l 𝐿 = ( LineG ‘ 𝐺 )
colperpex.g ( 𝜑𝐺 ∈ TarskiG )
perpdrag.1 ( 𝜑𝐴𝐷 )
perpdrag.2 ( 𝜑𝐵𝐷 )
perpdrag.3 ( 𝜑𝐶𝑃 )
perpdrag.4 ( 𝜑𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐵 𝐿 𝐶 ) )
Assertion perpdragALT ( 𝜑 → ⟨“ 𝐴 𝐵 𝐶 ”⟩ ∈ ( ∟G ‘ 𝐺 ) )

Proof

Step Hyp Ref Expression
1 colperpex.p 𝑃 = ( Base ‘ 𝐺 )
2 colperpex.d = ( dist ‘ 𝐺 )
3 colperpex.i 𝐼 = ( Itv ‘ 𝐺 )
4 colperpex.l 𝐿 = ( LineG ‘ 𝐺 )
5 colperpex.g ( 𝜑𝐺 ∈ TarskiG )
6 perpdrag.1 ( 𝜑𝐴𝐷 )
7 perpdrag.2 ( 𝜑𝐵𝐷 )
8 perpdrag.3 ( 𝜑𝐶𝑃 )
9 perpdrag.4 ( 𝜑𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐵 𝐿 𝐶 ) )
10 eqidd ( ( 𝜑𝐴 = 𝐵 ) → 𝐴 = 𝐴 )
11 simpr ( ( 𝜑𝐴 = 𝐵 ) → 𝐴 = 𝐵 )
12 eqidd ( ( 𝜑𝐴 = 𝐵 ) → 𝐶 = 𝐶 )
13 10 11 12 s3eqd ( ( 𝜑𝐴 = 𝐵 ) → ⟨“ 𝐴 𝐴 𝐶 ”⟩ = ⟨“ 𝐴 𝐵 𝐶 ”⟩ )
14 eqid ( pInvG ‘ 𝐺 ) = ( pInvG ‘ 𝐺 )
15 4 5 9 perpln1 ( 𝜑𝐷 ∈ ran 𝐿 )
16 1 4 3 5 15 6 tglnpt ( 𝜑𝐴𝑃 )
17 1 2 3 4 14 5 8 16 8 ragtrivb ( 𝜑 → ⟨“ 𝐶 𝐴 𝐴 ”⟩ ∈ ( ∟G ‘ 𝐺 ) )
18 1 2 3 4 14 5 8 16 16 17 ragcom ( 𝜑 → ⟨“ 𝐴 𝐴 𝐶 ”⟩ ∈ ( ∟G ‘ 𝐺 ) )
19 18 adantr ( ( 𝜑𝐴 = 𝐵 ) → ⟨“ 𝐴 𝐴 𝐶 ”⟩ ∈ ( ∟G ‘ 𝐺 ) )
20 13 19 eqeltrrd ( ( 𝜑𝐴 = 𝐵 ) → ⟨“ 𝐴 𝐵 𝐶 ”⟩ ∈ ( ∟G ‘ 𝐺 ) )
21 5 adantr ( ( 𝜑𝐴𝐵 ) → 𝐺 ∈ TarskiG )
22 16 adantr ( ( 𝜑𝐴𝐵 ) → 𝐴𝑃 )
23 1 4 3 5 15 7 tglnpt ( 𝜑𝐵𝑃 )
24 23 adantr ( ( 𝜑𝐴𝐵 ) → 𝐵𝑃 )
25 7 adantr ( ( 𝜑𝐴𝐵 ) → 𝐵𝐷 )
26 simpr ( ( 𝜑𝐴𝐵 ) → 𝐴𝐵 )
27 15 adantr ( ( 𝜑𝐴𝐵 ) → 𝐷 ∈ ran 𝐿 )
28 6 adantr ( ( 𝜑𝐴𝐵 ) → 𝐴𝐷 )
29 1 3 4 21 22 24 26 26 27 28 25 tglinethru ( ( 𝜑𝐴𝐵 ) → 𝐷 = ( 𝐴 𝐿 𝐵 ) )
30 25 29 eleqtrd ( ( 𝜑𝐴𝐵 ) → 𝐵 ∈ ( 𝐴 𝐿 𝐵 ) )
31 8 adantr ( ( 𝜑𝐴𝐵 ) → 𝐶𝑃 )
32 9 adantr ( ( 𝜑𝐴𝐵 ) → 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐵 𝐿 𝐶 ) )
33 29 32 eqbrtrrd ( ( 𝜑𝐴𝐵 ) → ( 𝐴 𝐿 𝐵 ) ( ⟂G ‘ 𝐺 ) ( 𝐵 𝐿 𝐶 ) )
34 1 2 3 4 21 22 24 30 31 33 perprag ( ( 𝜑𝐴𝐵 ) → ⟨“ 𝐴 𝐵 𝐶 ”⟩ ∈ ( ∟G ‘ 𝐺 ) )
35 20 34 pm2.61dane ( 𝜑 → ⟨“ 𝐴 𝐵 𝐶 ”⟩ ∈ ( ∟G ‘ 𝐺 ) )