| Step | Hyp | Ref | Expression | 
						
							| 1 |  | colperpex.p | ⊢ 𝑃  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | colperpex.d | ⊢  −   =  ( dist ‘ 𝐺 ) | 
						
							| 3 |  | colperpex.i | ⊢ 𝐼  =  ( Itv ‘ 𝐺 ) | 
						
							| 4 |  | colperpex.l | ⊢ 𝐿  =  ( LineG ‘ 𝐺 ) | 
						
							| 5 |  | colperpex.g | ⊢ ( 𝜑  →  𝐺  ∈  TarskiG ) | 
						
							| 6 |  | perpdrag.1 | ⊢ ( 𝜑  →  𝐴  ∈  𝐷 ) | 
						
							| 7 |  | perpdrag.2 | ⊢ ( 𝜑  →  𝐵  ∈  𝐷 ) | 
						
							| 8 |  | perpdrag.3 | ⊢ ( 𝜑  →  𝐶  ∈  𝑃 ) | 
						
							| 9 |  | perpdrag.4 | ⊢ ( 𝜑  →  𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐵 𝐿 𝐶 ) ) | 
						
							| 10 | 5 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝐴  ≠  𝑥 )  →  𝐺  ∈  TarskiG ) | 
						
							| 11 | 9 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝐴  ≠  𝑥 )  →  𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐵 𝐿 𝐶 ) ) | 
						
							| 12 | 4 10 11 | perpln1 | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝐴  ≠  𝑥 )  →  𝐷  ∈  ran  𝐿 ) | 
						
							| 13 | 6 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝐴  ≠  𝑥 )  →  𝐴  ∈  𝐷 ) | 
						
							| 14 | 1 4 3 10 12 13 | tglnpt | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝐴  ≠  𝑥 )  →  𝐴  ∈  𝑃 ) | 
						
							| 15 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝐴  ≠  𝑥 )  →  𝑥  ∈  𝐷 ) | 
						
							| 16 | 1 4 3 10 12 15 | tglnpt | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝐴  ≠  𝑥 )  →  𝑥  ∈  𝑃 ) | 
						
							| 17 | 7 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝐴  ≠  𝑥 )  →  𝐵  ∈  𝐷 ) | 
						
							| 18 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝐴  ≠  𝑥 )  →  𝐴  ≠  𝑥 ) | 
						
							| 19 | 1 3 4 10 14 16 18 18 12 13 15 | tglinethru | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝐴  ≠  𝑥 )  →  𝐷  =  ( 𝐴 𝐿 𝑥 ) ) | 
						
							| 20 | 17 19 | eleqtrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝐴  ≠  𝑥 )  →  𝐵  ∈  ( 𝐴 𝐿 𝑥 ) ) | 
						
							| 21 | 8 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝐴  ≠  𝑥 )  →  𝐶  ∈  𝑃 ) | 
						
							| 22 | 19 11 | eqbrtrrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝐴  ≠  𝑥 )  →  ( 𝐴 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) ( 𝐵 𝐿 𝐶 ) ) | 
						
							| 23 | 1 2 3 4 10 14 16 20 21 22 | perprag | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝐴  ≠  𝑥 )  →  〈“ 𝐴 𝐵 𝐶 ”〉  ∈  ( ∟G ‘ 𝐺 ) ) | 
						
							| 24 | 4 5 9 | perpln1 | ⊢ ( 𝜑  →  𝐷  ∈  ran  𝐿 ) | 
						
							| 25 | 1 3 4 5 24 6 | tglnpt2 | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  𝐷 𝐴  ≠  𝑥 ) | 
						
							| 26 | 23 25 | r19.29a | ⊢ ( 𝜑  →  〈“ 𝐴 𝐵 𝐶 ”〉  ∈  ( ∟G ‘ 𝐺 ) ) |