| Step | Hyp | Ref | Expression | 
						
							| 1 |  | colperpex.p |  |-  P = ( Base ` G ) | 
						
							| 2 |  | colperpex.d |  |-  .- = ( dist ` G ) | 
						
							| 3 |  | colperpex.i |  |-  I = ( Itv ` G ) | 
						
							| 4 |  | colperpex.l |  |-  L = ( LineG ` G ) | 
						
							| 5 |  | colperpex.g |  |-  ( ph -> G e. TarskiG ) | 
						
							| 6 |  | perpdrag.1 |  |-  ( ph -> A e. D ) | 
						
							| 7 |  | perpdrag.2 |  |-  ( ph -> B e. D ) | 
						
							| 8 |  | perpdrag.3 |  |-  ( ph -> C e. P ) | 
						
							| 9 |  | perpdrag.4 |  |-  ( ph -> D ( perpG ` G ) ( B L C ) ) | 
						
							| 10 | 5 | ad2antrr |  |-  ( ( ( ph /\ x e. D ) /\ A =/= x ) -> G e. TarskiG ) | 
						
							| 11 | 9 | ad2antrr |  |-  ( ( ( ph /\ x e. D ) /\ A =/= x ) -> D ( perpG ` G ) ( B L C ) ) | 
						
							| 12 | 4 10 11 | perpln1 |  |-  ( ( ( ph /\ x e. D ) /\ A =/= x ) -> D e. ran L ) | 
						
							| 13 | 6 | ad2antrr |  |-  ( ( ( ph /\ x e. D ) /\ A =/= x ) -> A e. D ) | 
						
							| 14 | 1 4 3 10 12 13 | tglnpt |  |-  ( ( ( ph /\ x e. D ) /\ A =/= x ) -> A e. P ) | 
						
							| 15 |  | simplr |  |-  ( ( ( ph /\ x e. D ) /\ A =/= x ) -> x e. D ) | 
						
							| 16 | 1 4 3 10 12 15 | tglnpt |  |-  ( ( ( ph /\ x e. D ) /\ A =/= x ) -> x e. P ) | 
						
							| 17 | 7 | ad2antrr |  |-  ( ( ( ph /\ x e. D ) /\ A =/= x ) -> B e. D ) | 
						
							| 18 |  | simpr |  |-  ( ( ( ph /\ x e. D ) /\ A =/= x ) -> A =/= x ) | 
						
							| 19 | 1 3 4 10 14 16 18 18 12 13 15 | tglinethru |  |-  ( ( ( ph /\ x e. D ) /\ A =/= x ) -> D = ( A L x ) ) | 
						
							| 20 | 17 19 | eleqtrd |  |-  ( ( ( ph /\ x e. D ) /\ A =/= x ) -> B e. ( A L x ) ) | 
						
							| 21 | 8 | ad2antrr |  |-  ( ( ( ph /\ x e. D ) /\ A =/= x ) -> C e. P ) | 
						
							| 22 | 19 11 | eqbrtrrd |  |-  ( ( ( ph /\ x e. D ) /\ A =/= x ) -> ( A L x ) ( perpG ` G ) ( B L C ) ) | 
						
							| 23 | 1 2 3 4 10 14 16 20 21 22 | perprag |  |-  ( ( ( ph /\ x e. D ) /\ A =/= x ) -> <" A B C "> e. ( raG ` G ) ) | 
						
							| 24 | 4 5 9 | perpln1 |  |-  ( ph -> D e. ran L ) | 
						
							| 25 | 1 3 4 5 24 6 | tglnpt2 |  |-  ( ph -> E. x e. D A =/= x ) | 
						
							| 26 | 23 25 | r19.29a |  |-  ( ph -> <" A B C "> e. ( raG ` G ) ) |