| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tglnpt2.p |  |-  P = ( Base ` G ) | 
						
							| 2 |  | tglnpt2.i |  |-  I = ( Itv ` G ) | 
						
							| 3 |  | tglnpt2.l |  |-  L = ( LineG ` G ) | 
						
							| 4 |  | tglnpt2.g |  |-  ( ph -> G e. TarskiG ) | 
						
							| 5 |  | tglnpt2.a |  |-  ( ph -> A e. ran L ) | 
						
							| 6 |  | tglnpt2.x |  |-  ( ph -> X e. A ) | 
						
							| 7 | 4 | ad4antr |  |-  ( ( ( ( ( ph /\ x e. P ) /\ z e. P ) /\ ( A = ( x L z ) /\ x =/= z ) ) /\ X = x ) -> G e. TarskiG ) | 
						
							| 8 |  | simp-4r |  |-  ( ( ( ( ( ph /\ x e. P ) /\ z e. P ) /\ ( A = ( x L z ) /\ x =/= z ) ) /\ X = x ) -> x e. P ) | 
						
							| 9 |  | simpllr |  |-  ( ( ( ( ( ph /\ x e. P ) /\ z e. P ) /\ ( A = ( x L z ) /\ x =/= z ) ) /\ X = x ) -> z e. P ) | 
						
							| 10 |  | simplrr |  |-  ( ( ( ( ( ph /\ x e. P ) /\ z e. P ) /\ ( A = ( x L z ) /\ x =/= z ) ) /\ X = x ) -> x =/= z ) | 
						
							| 11 | 1 2 3 7 8 9 10 | tglinerflx2 |  |-  ( ( ( ( ( ph /\ x e. P ) /\ z e. P ) /\ ( A = ( x L z ) /\ x =/= z ) ) /\ X = x ) -> z e. ( x L z ) ) | 
						
							| 12 |  | simplrl |  |-  ( ( ( ( ( ph /\ x e. P ) /\ z e. P ) /\ ( A = ( x L z ) /\ x =/= z ) ) /\ X = x ) -> A = ( x L z ) ) | 
						
							| 13 | 11 12 | eleqtrrd |  |-  ( ( ( ( ( ph /\ x e. P ) /\ z e. P ) /\ ( A = ( x L z ) /\ x =/= z ) ) /\ X = x ) -> z e. A ) | 
						
							| 14 |  | simpr |  |-  ( ( ( ( ( ph /\ x e. P ) /\ z e. P ) /\ ( A = ( x L z ) /\ x =/= z ) ) /\ X = x ) -> X = x ) | 
						
							| 15 | 14 10 | eqnetrd |  |-  ( ( ( ( ( ph /\ x e. P ) /\ z e. P ) /\ ( A = ( x L z ) /\ x =/= z ) ) /\ X = x ) -> X =/= z ) | 
						
							| 16 |  | neeq2 |  |-  ( y = z -> ( X =/= y <-> X =/= z ) ) | 
						
							| 17 | 16 | rspcev |  |-  ( ( z e. A /\ X =/= z ) -> E. y e. A X =/= y ) | 
						
							| 18 | 13 15 17 | syl2anc |  |-  ( ( ( ( ( ph /\ x e. P ) /\ z e. P ) /\ ( A = ( x L z ) /\ x =/= z ) ) /\ X = x ) -> E. y e. A X =/= y ) | 
						
							| 19 | 4 | ad4antr |  |-  ( ( ( ( ( ph /\ x e. P ) /\ z e. P ) /\ ( A = ( x L z ) /\ x =/= z ) ) /\ X =/= x ) -> G e. TarskiG ) | 
						
							| 20 |  | simp-4r |  |-  ( ( ( ( ( ph /\ x e. P ) /\ z e. P ) /\ ( A = ( x L z ) /\ x =/= z ) ) /\ X =/= x ) -> x e. P ) | 
						
							| 21 |  | simpllr |  |-  ( ( ( ( ( ph /\ x e. P ) /\ z e. P ) /\ ( A = ( x L z ) /\ x =/= z ) ) /\ X =/= x ) -> z e. P ) | 
						
							| 22 |  | simplrr |  |-  ( ( ( ( ( ph /\ x e. P ) /\ z e. P ) /\ ( A = ( x L z ) /\ x =/= z ) ) /\ X =/= x ) -> x =/= z ) | 
						
							| 23 | 1 2 3 19 20 21 22 | tglinerflx1 |  |-  ( ( ( ( ( ph /\ x e. P ) /\ z e. P ) /\ ( A = ( x L z ) /\ x =/= z ) ) /\ X =/= x ) -> x e. ( x L z ) ) | 
						
							| 24 |  | simplrl |  |-  ( ( ( ( ( ph /\ x e. P ) /\ z e. P ) /\ ( A = ( x L z ) /\ x =/= z ) ) /\ X =/= x ) -> A = ( x L z ) ) | 
						
							| 25 | 23 24 | eleqtrrd |  |-  ( ( ( ( ( ph /\ x e. P ) /\ z e. P ) /\ ( A = ( x L z ) /\ x =/= z ) ) /\ X =/= x ) -> x e. A ) | 
						
							| 26 |  | simpr |  |-  ( ( ( ( ( ph /\ x e. P ) /\ z e. P ) /\ ( A = ( x L z ) /\ x =/= z ) ) /\ X =/= x ) -> X =/= x ) | 
						
							| 27 |  | neeq2 |  |-  ( y = x -> ( X =/= y <-> X =/= x ) ) | 
						
							| 28 | 27 | rspcev |  |-  ( ( x e. A /\ X =/= x ) -> E. y e. A X =/= y ) | 
						
							| 29 | 25 26 28 | syl2anc |  |-  ( ( ( ( ( ph /\ x e. P ) /\ z e. P ) /\ ( A = ( x L z ) /\ x =/= z ) ) /\ X =/= x ) -> E. y e. A X =/= y ) | 
						
							| 30 | 18 29 | pm2.61dane |  |-  ( ( ( ( ph /\ x e. P ) /\ z e. P ) /\ ( A = ( x L z ) /\ x =/= z ) ) -> E. y e. A X =/= y ) | 
						
							| 31 | 1 2 3 4 5 | tgisline |  |-  ( ph -> E. x e. P E. z e. P ( A = ( x L z ) /\ x =/= z ) ) | 
						
							| 32 | 30 31 | r19.29vva |  |-  ( ph -> E. y e. A X =/= y ) |