| Step |
Hyp |
Ref |
Expression |
| 1 |
|
colperpex.p |
|- P = ( Base ` G ) |
| 2 |
|
colperpex.d |
|- .- = ( dist ` G ) |
| 3 |
|
colperpex.i |
|- I = ( Itv ` G ) |
| 4 |
|
colperpex.l |
|- L = ( LineG ` G ) |
| 5 |
|
colperpex.g |
|- ( ph -> G e. TarskiG ) |
| 6 |
|
colperp.a |
|- ( ph -> A e. P ) |
| 7 |
|
colperp.b |
|- ( ph -> B e. P ) |
| 8 |
|
colperp.c |
|- ( ph -> C e. P ) |
| 9 |
|
colperp.1 |
|- ( ph -> ( A L B ) ( perpG ` G ) D ) |
| 10 |
|
colperp.2 |
|- ( ph -> ( C e. ( A L B ) \/ A = B ) ) |
| 11 |
|
colperp.3 |
|- ( ph -> A =/= C ) |
| 12 |
4 5 9
|
perpln1 |
|- ( ph -> ( A L B ) e. ran L ) |
| 13 |
1 3 4 5 6 7 12
|
tglnne |
|- ( ph -> A =/= B ) |
| 14 |
1 3 4 5 6 7 13
|
tglinerflx1 |
|- ( ph -> A e. ( A L B ) ) |
| 15 |
13
|
neneqd |
|- ( ph -> -. A = B ) |
| 16 |
10
|
orcomd |
|- ( ph -> ( A = B \/ C e. ( A L B ) ) ) |
| 17 |
16
|
ord |
|- ( ph -> ( -. A = B -> C e. ( A L B ) ) ) |
| 18 |
15 17
|
mpd |
|- ( ph -> C e. ( A L B ) ) |
| 19 |
1 3 4 5 6 8 11 11 12 14 18
|
tglinethru |
|- ( ph -> ( A L B ) = ( A L C ) ) |
| 20 |
19 9
|
eqbrtrrd |
|- ( ph -> ( A L C ) ( perpG ` G ) D ) |