Metamath Proof Explorer


Theorem colperp

Description: Deduce a perpendicularity from perpendicularity and colinearity. (Contributed by Thierry Arnoux, 8-Dec-2019)

Ref Expression
Hypotheses colperpex.p
|- P = ( Base ` G )
colperpex.d
|- .- = ( dist ` G )
colperpex.i
|- I = ( Itv ` G )
colperpex.l
|- L = ( LineG ` G )
colperpex.g
|- ( ph -> G e. TarskiG )
colperp.a
|- ( ph -> A e. P )
colperp.b
|- ( ph -> B e. P )
colperp.c
|- ( ph -> C e. P )
colperp.1
|- ( ph -> ( A L B ) ( perpG ` G ) D )
colperp.2
|- ( ph -> ( C e. ( A L B ) \/ A = B ) )
colperp.3
|- ( ph -> A =/= C )
Assertion colperp
|- ( ph -> ( A L C ) ( perpG ` G ) D )

Proof

Step Hyp Ref Expression
1 colperpex.p
 |-  P = ( Base ` G )
2 colperpex.d
 |-  .- = ( dist ` G )
3 colperpex.i
 |-  I = ( Itv ` G )
4 colperpex.l
 |-  L = ( LineG ` G )
5 colperpex.g
 |-  ( ph -> G e. TarskiG )
6 colperp.a
 |-  ( ph -> A e. P )
7 colperp.b
 |-  ( ph -> B e. P )
8 colperp.c
 |-  ( ph -> C e. P )
9 colperp.1
 |-  ( ph -> ( A L B ) ( perpG ` G ) D )
10 colperp.2
 |-  ( ph -> ( C e. ( A L B ) \/ A = B ) )
11 colperp.3
 |-  ( ph -> A =/= C )
12 4 5 9 perpln1
 |-  ( ph -> ( A L B ) e. ran L )
13 1 3 4 5 6 7 12 tglnne
 |-  ( ph -> A =/= B )
14 1 3 4 5 6 7 13 tglinerflx1
 |-  ( ph -> A e. ( A L B ) )
15 13 neneqd
 |-  ( ph -> -. A = B )
16 10 orcomd
 |-  ( ph -> ( A = B \/ C e. ( A L B ) ) )
17 16 ord
 |-  ( ph -> ( -. A = B -> C e. ( A L B ) ) )
18 15 17 mpd
 |-  ( ph -> C e. ( A L B ) )
19 1 3 4 5 6 8 11 11 12 14 18 tglinethru
 |-  ( ph -> ( A L B ) = ( A L C ) )
20 19 9 eqbrtrrd
 |-  ( ph -> ( A L C ) ( perpG ` G ) D )