Description: Deduce a perpendicularity from perpendicularity and colinearity. (Contributed by Thierry Arnoux, 8-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | colperpex.p | |
|
colperpex.d | |
||
colperpex.i | |
||
colperpex.l | |
||
colperpex.g | |
||
colperp.a | |
||
colperp.b | |
||
colperp.c | |
||
colperp.1 | |
||
colperp.2 | |
||
colperp.3 | |
||
Assertion | colperp | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | colperpex.p | |
|
2 | colperpex.d | |
|
3 | colperpex.i | |
|
4 | colperpex.l | |
|
5 | colperpex.g | |
|
6 | colperp.a | |
|
7 | colperp.b | |
|
8 | colperp.c | |
|
9 | colperp.1 | |
|
10 | colperp.2 | |
|
11 | colperp.3 | |
|
12 | 4 5 9 | perpln1 | |
13 | 1 3 4 5 6 7 12 | tglnne | |
14 | 1 3 4 5 6 7 13 | tglinerflx1 | |
15 | 13 | neneqd | |
16 | 10 | orcomd | |
17 | 16 | ord | |
18 | 15 17 | mpd | |
19 | 1 3 4 5 6 8 11 11 12 14 18 | tglinethru | |
20 | 19 9 | eqbrtrrd | |