Metamath Proof Explorer


Theorem colperp

Description: Deduce a perpendicularity from perpendicularity and colinearity. (Contributed by Thierry Arnoux, 8-Dec-2019)

Ref Expression
Hypotheses colperpex.p P=BaseG
colperpex.d -˙=distG
colperpex.i I=ItvG
colperpex.l L=Line𝒢G
colperpex.g φG𝒢Tarski
colperp.a φAP
colperp.b φBP
colperp.c φCP
colperp.1 φALB𝒢GD
colperp.2 φCALBA=B
colperp.3 φAC
Assertion colperp φALC𝒢GD

Proof

Step Hyp Ref Expression
1 colperpex.p P=BaseG
2 colperpex.d -˙=distG
3 colperpex.i I=ItvG
4 colperpex.l L=Line𝒢G
5 colperpex.g φG𝒢Tarski
6 colperp.a φAP
7 colperp.b φBP
8 colperp.c φCP
9 colperp.1 φALB𝒢GD
10 colperp.2 φCALBA=B
11 colperp.3 φAC
12 4 5 9 perpln1 φALBranL
13 1 3 4 5 6 7 12 tglnne φAB
14 1 3 4 5 6 7 13 tglinerflx1 φAALB
15 13 neneqd φ¬A=B
16 10 orcomd φA=BCALB
17 16 ord φ¬A=BCALB
18 15 17 mpd φCALB
19 1 3 4 5 6 8 11 11 12 14 18 tglinethru φALB=ALC
20 19 9 eqbrtrrd φALC𝒢GD