Description: Derive a line from perpendicularity. (Contributed by Thierry Arnoux, 27-Nov-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | perpln.l | |
|
perpln.1 | |
||
perpln.2 | |
||
Assertion | perpln1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | perpln.l | |
|
2 | perpln.1 | |
|
3 | perpln.2 | |
|
4 | df-perpg | |
|
5 | simpr | |
|
6 | 5 | fveq2d | |
7 | 6 1 | eqtr4di | |
8 | 7 | rneqd | |
9 | 8 | eleq2d | |
10 | 8 | eleq2d | |
11 | 9 10 | anbi12d | |
12 | 5 | fveq2d | |
13 | 12 | eleq2d | |
14 | 13 | ralbidv | |
15 | 14 | rexralbidv | |
16 | 11 15 | anbi12d | |
17 | 16 | opabbidv | |
18 | 2 | elexd | |
19 | 1 | fvexi | |
20 | rnexg | |
|
21 | 19 20 | mp1i | |
22 | 21 21 | xpexd | |
23 | opabssxp | |
|
24 | 23 | a1i | |
25 | 22 24 | ssexd | |
26 | 4 17 18 25 | fvmptd2 | |
27 | anass | |
|
28 | 27 | opabbii | |
29 | 26 28 | eqtrdi | |
30 | 29 | dmeqd | |
31 | dmopabss | |
|
32 | 30 31 | eqsstrdi | |
33 | relopabv | |
|
34 | 26 | releqd | |
35 | 33 34 | mpbiri | |
36 | brrelex12 | |
|
37 | 35 3 36 | syl2anc | |
38 | 37 | simpld | |
39 | 37 | simprd | |
40 | breldmg | |
|
41 | 38 39 3 40 | syl3anc | |
42 | 32 41 | sseldd | |