| Step |
Hyp |
Ref |
Expression |
| 1 |
|
colperpex.p |
|- P = ( Base ` G ) |
| 2 |
|
colperpex.d |
|- .- = ( dist ` G ) |
| 3 |
|
colperpex.i |
|- I = ( Itv ` G ) |
| 4 |
|
colperpex.l |
|- L = ( LineG ` G ) |
| 5 |
|
colperpex.g |
|- ( ph -> G e. TarskiG ) |
| 6 |
|
colperpexlem.s |
|- S = ( pInvG ` G ) |
| 7 |
|
colperpexlem.m |
|- M = ( S ` A ) |
| 8 |
|
colperpexlem.n |
|- N = ( S ` B ) |
| 9 |
|
colperpexlem.k |
|- K = ( S ` Q ) |
| 10 |
|
colperpexlem.a |
|- ( ph -> A e. P ) |
| 11 |
|
colperpexlem.b |
|- ( ph -> B e. P ) |
| 12 |
|
colperpexlem.c |
|- ( ph -> C e. P ) |
| 13 |
|
colperpexlem.q |
|- ( ph -> Q e. P ) |
| 14 |
|
colperpexlem.1 |
|- ( ph -> <" A B C "> e. ( raG ` G ) ) |
| 15 |
|
colperpexlem.2 |
|- ( ph -> ( K ` ( M ` C ) ) = ( N ` C ) ) |
| 16 |
1 2 3 4 6 5 10 7 13
|
mircl |
|- ( ph -> ( M ` Q ) e. P ) |
| 17 |
1 2 3 4 6 5 10 7 12
|
mircl |
|- ( ph -> ( M ` C ) e. P ) |
| 18 |
|
eqid |
|- ( S ` B ) = ( S ` B ) |
| 19 |
1 2 3 4 6 5 11 18 12
|
mircl |
|- ( ph -> ( ( S ` B ) ` C ) e. P ) |
| 20 |
1 2 3 4 6 5 10 7 19
|
mircl |
|- ( ph -> ( M ` ( ( S ` B ) ` C ) ) e. P ) |
| 21 |
1 2 3 4 6 5 11 8 12
|
mircl |
|- ( ph -> ( N ` C ) e. P ) |
| 22 |
15 21
|
eqeltrd |
|- ( ph -> ( K ` ( M ` C ) ) e. P ) |
| 23 |
1 2 3 4 6 5 13 9 17
|
mirbtwn |
|- ( ph -> Q e. ( ( K ` ( M ` C ) ) I ( M ` C ) ) ) |
| 24 |
1 2 3 5 22 13 17 23
|
tgbtwncom |
|- ( ph -> Q e. ( ( M ` C ) I ( K ` ( M ` C ) ) ) ) |
| 25 |
8
|
fveq1i |
|- ( N ` C ) = ( ( S ` B ) ` C ) |
| 26 |
15 25
|
eqtrdi |
|- ( ph -> ( K ` ( M ` C ) ) = ( ( S ` B ) ` C ) ) |
| 27 |
26
|
oveq2d |
|- ( ph -> ( ( M ` C ) I ( K ` ( M ` C ) ) ) = ( ( M ` C ) I ( ( S ` B ) ` C ) ) ) |
| 28 |
24 27
|
eleqtrd |
|- ( ph -> Q e. ( ( M ` C ) I ( ( S ` B ) ` C ) ) ) |
| 29 |
1 2 3 5 17 13 19 28
|
tgbtwncom |
|- ( ph -> Q e. ( ( ( S ` B ) ` C ) I ( M ` C ) ) ) |
| 30 |
1 2 3 4 6 5 10 7 19 13 17 29
|
mirbtwni |
|- ( ph -> ( M ` Q ) e. ( ( M ` ( ( S ` B ) ` C ) ) I ( M ` ( M ` C ) ) ) ) |
| 31 |
1 2 3 4 6 5 10 7 12
|
mirmir |
|- ( ph -> ( M ` ( M ` C ) ) = C ) |
| 32 |
31
|
oveq2d |
|- ( ph -> ( ( M ` ( ( S ` B ) ` C ) ) I ( M ` ( M ` C ) ) ) = ( ( M ` ( ( S ` B ) ` C ) ) I C ) ) |
| 33 |
30 32
|
eleqtrd |
|- ( ph -> ( M ` Q ) e. ( ( M ` ( ( S ` B ) ` C ) ) I C ) ) |
| 34 |
1 2 3 5 17 19
|
axtgcgrrflx |
|- ( ph -> ( ( M ` C ) .- ( ( S ` B ) ` C ) ) = ( ( ( S ` B ) ` C ) .- ( M ` C ) ) ) |
| 35 |
1 2 3 4 6 5 10 7 19 17
|
miriso |
|- ( ph -> ( ( M ` ( ( S ` B ) ` C ) ) .- ( M ` ( M ` C ) ) ) = ( ( ( S ` B ) ` C ) .- ( M ` C ) ) ) |
| 36 |
31
|
oveq2d |
|- ( ph -> ( ( M ` ( ( S ` B ) ` C ) ) .- ( M ` ( M ` C ) ) ) = ( ( M ` ( ( S ` B ) ` C ) ) .- C ) ) |
| 37 |
34 35 36
|
3eqtr2d |
|- ( ph -> ( ( M ` C ) .- ( ( S ` B ) ` C ) ) = ( ( M ` ( ( S ` B ) ` C ) ) .- C ) ) |
| 38 |
26
|
oveq2d |
|- ( ph -> ( Q .- ( K ` ( M ` C ) ) ) = ( Q .- ( ( S ` B ) ` C ) ) ) |
| 39 |
1 2 3 4 6 5 13 9 17
|
mircgr |
|- ( ph -> ( Q .- ( K ` ( M ` C ) ) ) = ( Q .- ( M ` C ) ) ) |
| 40 |
38 39
|
eqtr3d |
|- ( ph -> ( Q .- ( ( S ` B ) ` C ) ) = ( Q .- ( M ` C ) ) ) |
| 41 |
1 2 3 4 6 5 10 7 13 17
|
miriso |
|- ( ph -> ( ( M ` Q ) .- ( M ` ( M ` C ) ) ) = ( Q .- ( M ` C ) ) ) |
| 42 |
31
|
oveq2d |
|- ( ph -> ( ( M ` Q ) .- ( M ` ( M ` C ) ) ) = ( ( M ` Q ) .- C ) ) |
| 43 |
40 41 42
|
3eqtr2d |
|- ( ph -> ( Q .- ( ( S ` B ) ` C ) ) = ( ( M ` Q ) .- C ) ) |
| 44 |
1 2 3 4 6 5 10 7 11
|
mirmir |
|- ( ph -> ( M ` ( M ` B ) ) = B ) |
| 45 |
|
eqidd |
|- ( ph -> ( M ` B ) = ( M ` B ) ) |
| 46 |
|
eqidd |
|- ( ph -> ( M ` C ) = ( M ` C ) ) |
| 47 |
44 45 46
|
s3eqd |
|- ( ph -> <" ( M ` ( M ` B ) ) ( M ` B ) ( M ` C ) "> = <" B ( M ` B ) ( M ` C ) "> ) |
| 48 |
1 2 3 4 6 5 10 7 11
|
mircl |
|- ( ph -> ( M ` B ) e. P ) |
| 49 |
|
simpr |
|- ( ( ph /\ A = B ) -> A = B ) |
| 50 |
49
|
fveq2d |
|- ( ( ph /\ A = B ) -> ( M ` A ) = ( M ` B ) ) |
| 51 |
5
|
adantr |
|- ( ( ph /\ A = B ) -> G e. TarskiG ) |
| 52 |
10
|
adantr |
|- ( ( ph /\ A = B ) -> A e. P ) |
| 53 |
1 2 3 4 6 51 52 7
|
mircinv |
|- ( ( ph /\ A = B ) -> ( M ` A ) = A ) |
| 54 |
50 53
|
eqtr3d |
|- ( ( ph /\ A = B ) -> ( M ` B ) = A ) |
| 55 |
|
eqidd |
|- ( ( ph /\ A = B ) -> B = B ) |
| 56 |
|
eqidd |
|- ( ( ph /\ A = B ) -> C = C ) |
| 57 |
54 55 56
|
s3eqd |
|- ( ( ph /\ A = B ) -> <" ( M ` B ) B C "> = <" A B C "> ) |
| 58 |
14
|
adantr |
|- ( ( ph /\ A = B ) -> <" A B C "> e. ( raG ` G ) ) |
| 59 |
57 58
|
eqeltrd |
|- ( ( ph /\ A = B ) -> <" ( M ` B ) B C "> e. ( raG ` G ) ) |
| 60 |
5
|
adantr |
|- ( ( ph /\ A =/= B ) -> G e. TarskiG ) |
| 61 |
10
|
adantr |
|- ( ( ph /\ A =/= B ) -> A e. P ) |
| 62 |
11
|
adantr |
|- ( ( ph /\ A =/= B ) -> B e. P ) |
| 63 |
12
|
adantr |
|- ( ( ph /\ A =/= B ) -> C e. P ) |
| 64 |
1 2 3 4 6 60 61 7 62
|
mircl |
|- ( ( ph /\ A =/= B ) -> ( M ` B ) e. P ) |
| 65 |
14
|
adantr |
|- ( ( ph /\ A =/= B ) -> <" A B C "> e. ( raG ` G ) ) |
| 66 |
|
simpr |
|- ( ( ph /\ A =/= B ) -> A =/= B ) |
| 67 |
1 2 3 4 6 60 61 7 62
|
mirbtwn |
|- ( ( ph /\ A =/= B ) -> A e. ( ( M ` B ) I B ) ) |
| 68 |
1 4 3 60 64 62 61 67
|
btwncolg1 |
|- ( ( ph /\ A =/= B ) -> ( A e. ( ( M ` B ) L B ) \/ ( M ` B ) = B ) ) |
| 69 |
1 4 3 60 64 62 61 68
|
colcom |
|- ( ( ph /\ A =/= B ) -> ( A e. ( B L ( M ` B ) ) \/ B = ( M ` B ) ) ) |
| 70 |
1 2 3 4 6 60 61 62 63 64 65 66 69
|
ragcol |
|- ( ( ph /\ A =/= B ) -> <" ( M ` B ) B C "> e. ( raG ` G ) ) |
| 71 |
59 70
|
pm2.61dane |
|- ( ph -> <" ( M ` B ) B C "> e. ( raG ` G ) ) |
| 72 |
1 2 3 4 6 5 48 11 12 71 7 10
|
mirrag |
|- ( ph -> <" ( M ` ( M ` B ) ) ( M ` B ) ( M ` C ) "> e. ( raG ` G ) ) |
| 73 |
47 72
|
eqeltrrd |
|- ( ph -> <" B ( M ` B ) ( M ` C ) "> e. ( raG ` G ) ) |
| 74 |
1 2 3 4 6 5 11 48 17
|
israg |
|- ( ph -> ( <" B ( M ` B ) ( M ` C ) "> e. ( raG ` G ) <-> ( B .- ( M ` C ) ) = ( B .- ( ( S ` ( M ` B ) ) ` ( M ` C ) ) ) ) ) |
| 75 |
73 74
|
mpbid |
|- ( ph -> ( B .- ( M ` C ) ) = ( B .- ( ( S ` ( M ` B ) ) ` ( M ` C ) ) ) ) |
| 76 |
1 2 3 4 6 5 10 7 12 11
|
mirmir2 |
|- ( ph -> ( M ` ( ( S ` B ) ` C ) ) = ( ( S ` ( M ` B ) ) ` ( M ` C ) ) ) |
| 77 |
76
|
oveq2d |
|- ( ph -> ( B .- ( M ` ( ( S ` B ) ` C ) ) ) = ( B .- ( ( S ` ( M ` B ) ) ` ( M ` C ) ) ) ) |
| 78 |
75 77
|
eqtr4d |
|- ( ph -> ( B .- ( M ` C ) ) = ( B .- ( M ` ( ( S ` B ) ` C ) ) ) ) |
| 79 |
1 2 3 5 11 17 11 20 78
|
tgcgrcomlr |
|- ( ph -> ( ( M ` C ) .- B ) = ( ( M ` ( ( S ` B ) ` C ) ) .- B ) ) |
| 80 |
1 2 3 4 6 5 11 18 12
|
mircgr |
|- ( ph -> ( B .- ( ( S ` B ) ` C ) ) = ( B .- C ) ) |
| 81 |
1 2 3 5 11 19 11 12 80
|
tgcgrcomlr |
|- ( ph -> ( ( ( S ` B ) ` C ) .- B ) = ( C .- B ) ) |
| 82 |
1 2 3 5 17 13 19 11 20 16 12 11 28 33 37 43 79 81
|
tgifscgr |
|- ( ph -> ( Q .- B ) = ( ( M ` Q ) .- B ) ) |
| 83 |
1 2 3 5 13 11 16 11 82
|
tgcgrcomlr |
|- ( ph -> ( B .- Q ) = ( B .- ( M ` Q ) ) ) |
| 84 |
7
|
fveq1i |
|- ( M ` Q ) = ( ( S ` A ) ` Q ) |
| 85 |
84
|
oveq2i |
|- ( B .- ( M ` Q ) ) = ( B .- ( ( S ` A ) ` Q ) ) |
| 86 |
83 85
|
eqtrdi |
|- ( ph -> ( B .- Q ) = ( B .- ( ( S ` A ) ` Q ) ) ) |
| 87 |
1 2 3 4 6 5 11 10 13
|
israg |
|- ( ph -> ( <" B A Q "> e. ( raG ` G ) <-> ( B .- Q ) = ( B .- ( ( S ` A ) ` Q ) ) ) ) |
| 88 |
86 87
|
mpbird |
|- ( ph -> <" B A Q "> e. ( raG ` G ) ) |