Metamath Proof Explorer


Theorem colperpexlem1

Description: Lemma for colperp . First part of lemma 8.20 of Schwabhauser p. 62. (Contributed by Thierry Arnoux, 27-Oct-2019)

Ref Expression
Hypotheses colperpex.p 𝑃 = ( Base ‘ 𝐺 )
colperpex.d = ( dist ‘ 𝐺 )
colperpex.i 𝐼 = ( Itv ‘ 𝐺 )
colperpex.l 𝐿 = ( LineG ‘ 𝐺 )
colperpex.g ( 𝜑𝐺 ∈ TarskiG )
colperpexlem.s 𝑆 = ( pInvG ‘ 𝐺 )
colperpexlem.m 𝑀 = ( 𝑆𝐴 )
colperpexlem.n 𝑁 = ( 𝑆𝐵 )
colperpexlem.k 𝐾 = ( 𝑆𝑄 )
colperpexlem.a ( 𝜑𝐴𝑃 )
colperpexlem.b ( 𝜑𝐵𝑃 )
colperpexlem.c ( 𝜑𝐶𝑃 )
colperpexlem.q ( 𝜑𝑄𝑃 )
colperpexlem.1 ( 𝜑 → ⟨“ 𝐴 𝐵 𝐶 ”⟩ ∈ ( ∟G ‘ 𝐺 ) )
colperpexlem.2 ( 𝜑 → ( 𝐾 ‘ ( 𝑀𝐶 ) ) = ( 𝑁𝐶 ) )
Assertion colperpexlem1 ( 𝜑 → ⟨“ 𝐵 𝐴 𝑄 ”⟩ ∈ ( ∟G ‘ 𝐺 ) )

Proof

Step Hyp Ref Expression
1 colperpex.p 𝑃 = ( Base ‘ 𝐺 )
2 colperpex.d = ( dist ‘ 𝐺 )
3 colperpex.i 𝐼 = ( Itv ‘ 𝐺 )
4 colperpex.l 𝐿 = ( LineG ‘ 𝐺 )
5 colperpex.g ( 𝜑𝐺 ∈ TarskiG )
6 colperpexlem.s 𝑆 = ( pInvG ‘ 𝐺 )
7 colperpexlem.m 𝑀 = ( 𝑆𝐴 )
8 colperpexlem.n 𝑁 = ( 𝑆𝐵 )
9 colperpexlem.k 𝐾 = ( 𝑆𝑄 )
10 colperpexlem.a ( 𝜑𝐴𝑃 )
11 colperpexlem.b ( 𝜑𝐵𝑃 )
12 colperpexlem.c ( 𝜑𝐶𝑃 )
13 colperpexlem.q ( 𝜑𝑄𝑃 )
14 colperpexlem.1 ( 𝜑 → ⟨“ 𝐴 𝐵 𝐶 ”⟩ ∈ ( ∟G ‘ 𝐺 ) )
15 colperpexlem.2 ( 𝜑 → ( 𝐾 ‘ ( 𝑀𝐶 ) ) = ( 𝑁𝐶 ) )
16 1 2 3 4 6 5 10 7 13 mircl ( 𝜑 → ( 𝑀𝑄 ) ∈ 𝑃 )
17 1 2 3 4 6 5 10 7 12 mircl ( 𝜑 → ( 𝑀𝐶 ) ∈ 𝑃 )
18 eqid ( 𝑆𝐵 ) = ( 𝑆𝐵 )
19 1 2 3 4 6 5 11 18 12 mircl ( 𝜑 → ( ( 𝑆𝐵 ) ‘ 𝐶 ) ∈ 𝑃 )
20 1 2 3 4 6 5 10 7 19 mircl ( 𝜑 → ( 𝑀 ‘ ( ( 𝑆𝐵 ) ‘ 𝐶 ) ) ∈ 𝑃 )
21 1 2 3 4 6 5 11 8 12 mircl ( 𝜑 → ( 𝑁𝐶 ) ∈ 𝑃 )
22 15 21 eqeltrd ( 𝜑 → ( 𝐾 ‘ ( 𝑀𝐶 ) ) ∈ 𝑃 )
23 1 2 3 4 6 5 13 9 17 mirbtwn ( 𝜑𝑄 ∈ ( ( 𝐾 ‘ ( 𝑀𝐶 ) ) 𝐼 ( 𝑀𝐶 ) ) )
24 1 2 3 5 22 13 17 23 tgbtwncom ( 𝜑𝑄 ∈ ( ( 𝑀𝐶 ) 𝐼 ( 𝐾 ‘ ( 𝑀𝐶 ) ) ) )
25 8 fveq1i ( 𝑁𝐶 ) = ( ( 𝑆𝐵 ) ‘ 𝐶 )
26 15 25 eqtrdi ( 𝜑 → ( 𝐾 ‘ ( 𝑀𝐶 ) ) = ( ( 𝑆𝐵 ) ‘ 𝐶 ) )
27 26 oveq2d ( 𝜑 → ( ( 𝑀𝐶 ) 𝐼 ( 𝐾 ‘ ( 𝑀𝐶 ) ) ) = ( ( 𝑀𝐶 ) 𝐼 ( ( 𝑆𝐵 ) ‘ 𝐶 ) ) )
28 24 27 eleqtrd ( 𝜑𝑄 ∈ ( ( 𝑀𝐶 ) 𝐼 ( ( 𝑆𝐵 ) ‘ 𝐶 ) ) )
29 1 2 3 5 17 13 19 28 tgbtwncom ( 𝜑𝑄 ∈ ( ( ( 𝑆𝐵 ) ‘ 𝐶 ) 𝐼 ( 𝑀𝐶 ) ) )
30 1 2 3 4 6 5 10 7 19 13 17 29 mirbtwni ( 𝜑 → ( 𝑀𝑄 ) ∈ ( ( 𝑀 ‘ ( ( 𝑆𝐵 ) ‘ 𝐶 ) ) 𝐼 ( 𝑀 ‘ ( 𝑀𝐶 ) ) ) )
31 1 2 3 4 6 5 10 7 12 mirmir ( 𝜑 → ( 𝑀 ‘ ( 𝑀𝐶 ) ) = 𝐶 )
32 31 oveq2d ( 𝜑 → ( ( 𝑀 ‘ ( ( 𝑆𝐵 ) ‘ 𝐶 ) ) 𝐼 ( 𝑀 ‘ ( 𝑀𝐶 ) ) ) = ( ( 𝑀 ‘ ( ( 𝑆𝐵 ) ‘ 𝐶 ) ) 𝐼 𝐶 ) )
33 30 32 eleqtrd ( 𝜑 → ( 𝑀𝑄 ) ∈ ( ( 𝑀 ‘ ( ( 𝑆𝐵 ) ‘ 𝐶 ) ) 𝐼 𝐶 ) )
34 1 2 3 5 17 19 axtgcgrrflx ( 𝜑 → ( ( 𝑀𝐶 ) ( ( 𝑆𝐵 ) ‘ 𝐶 ) ) = ( ( ( 𝑆𝐵 ) ‘ 𝐶 ) ( 𝑀𝐶 ) ) )
35 1 2 3 4 6 5 10 7 19 17 miriso ( 𝜑 → ( ( 𝑀 ‘ ( ( 𝑆𝐵 ) ‘ 𝐶 ) ) ( 𝑀 ‘ ( 𝑀𝐶 ) ) ) = ( ( ( 𝑆𝐵 ) ‘ 𝐶 ) ( 𝑀𝐶 ) ) )
36 31 oveq2d ( 𝜑 → ( ( 𝑀 ‘ ( ( 𝑆𝐵 ) ‘ 𝐶 ) ) ( 𝑀 ‘ ( 𝑀𝐶 ) ) ) = ( ( 𝑀 ‘ ( ( 𝑆𝐵 ) ‘ 𝐶 ) ) 𝐶 ) )
37 34 35 36 3eqtr2d ( 𝜑 → ( ( 𝑀𝐶 ) ( ( 𝑆𝐵 ) ‘ 𝐶 ) ) = ( ( 𝑀 ‘ ( ( 𝑆𝐵 ) ‘ 𝐶 ) ) 𝐶 ) )
38 26 oveq2d ( 𝜑 → ( 𝑄 ( 𝐾 ‘ ( 𝑀𝐶 ) ) ) = ( 𝑄 ( ( 𝑆𝐵 ) ‘ 𝐶 ) ) )
39 1 2 3 4 6 5 13 9 17 mircgr ( 𝜑 → ( 𝑄 ( 𝐾 ‘ ( 𝑀𝐶 ) ) ) = ( 𝑄 ( 𝑀𝐶 ) ) )
40 38 39 eqtr3d ( 𝜑 → ( 𝑄 ( ( 𝑆𝐵 ) ‘ 𝐶 ) ) = ( 𝑄 ( 𝑀𝐶 ) ) )
41 1 2 3 4 6 5 10 7 13 17 miriso ( 𝜑 → ( ( 𝑀𝑄 ) ( 𝑀 ‘ ( 𝑀𝐶 ) ) ) = ( 𝑄 ( 𝑀𝐶 ) ) )
42 31 oveq2d ( 𝜑 → ( ( 𝑀𝑄 ) ( 𝑀 ‘ ( 𝑀𝐶 ) ) ) = ( ( 𝑀𝑄 ) 𝐶 ) )
43 40 41 42 3eqtr2d ( 𝜑 → ( 𝑄 ( ( 𝑆𝐵 ) ‘ 𝐶 ) ) = ( ( 𝑀𝑄 ) 𝐶 ) )
44 1 2 3 4 6 5 10 7 11 mirmir ( 𝜑 → ( 𝑀 ‘ ( 𝑀𝐵 ) ) = 𝐵 )
45 eqidd ( 𝜑 → ( 𝑀𝐵 ) = ( 𝑀𝐵 ) )
46 eqidd ( 𝜑 → ( 𝑀𝐶 ) = ( 𝑀𝐶 ) )
47 44 45 46 s3eqd ( 𝜑 → ⟨“ ( 𝑀 ‘ ( 𝑀𝐵 ) ) ( 𝑀𝐵 ) ( 𝑀𝐶 ) ”⟩ = ⟨“ 𝐵 ( 𝑀𝐵 ) ( 𝑀𝐶 ) ”⟩ )
48 1 2 3 4 6 5 10 7 11 mircl ( 𝜑 → ( 𝑀𝐵 ) ∈ 𝑃 )
49 simpr ( ( 𝜑𝐴 = 𝐵 ) → 𝐴 = 𝐵 )
50 49 fveq2d ( ( 𝜑𝐴 = 𝐵 ) → ( 𝑀𝐴 ) = ( 𝑀𝐵 ) )
51 5 adantr ( ( 𝜑𝐴 = 𝐵 ) → 𝐺 ∈ TarskiG )
52 10 adantr ( ( 𝜑𝐴 = 𝐵 ) → 𝐴𝑃 )
53 1 2 3 4 6 51 52 7 mircinv ( ( 𝜑𝐴 = 𝐵 ) → ( 𝑀𝐴 ) = 𝐴 )
54 50 53 eqtr3d ( ( 𝜑𝐴 = 𝐵 ) → ( 𝑀𝐵 ) = 𝐴 )
55 eqidd ( ( 𝜑𝐴 = 𝐵 ) → 𝐵 = 𝐵 )
56 eqidd ( ( 𝜑𝐴 = 𝐵 ) → 𝐶 = 𝐶 )
57 54 55 56 s3eqd ( ( 𝜑𝐴 = 𝐵 ) → ⟨“ ( 𝑀𝐵 ) 𝐵 𝐶 ”⟩ = ⟨“ 𝐴 𝐵 𝐶 ”⟩ )
58 14 adantr ( ( 𝜑𝐴 = 𝐵 ) → ⟨“ 𝐴 𝐵 𝐶 ”⟩ ∈ ( ∟G ‘ 𝐺 ) )
59 57 58 eqeltrd ( ( 𝜑𝐴 = 𝐵 ) → ⟨“ ( 𝑀𝐵 ) 𝐵 𝐶 ”⟩ ∈ ( ∟G ‘ 𝐺 ) )
60 5 adantr ( ( 𝜑𝐴𝐵 ) → 𝐺 ∈ TarskiG )
61 10 adantr ( ( 𝜑𝐴𝐵 ) → 𝐴𝑃 )
62 11 adantr ( ( 𝜑𝐴𝐵 ) → 𝐵𝑃 )
63 12 adantr ( ( 𝜑𝐴𝐵 ) → 𝐶𝑃 )
64 1 2 3 4 6 60 61 7 62 mircl ( ( 𝜑𝐴𝐵 ) → ( 𝑀𝐵 ) ∈ 𝑃 )
65 14 adantr ( ( 𝜑𝐴𝐵 ) → ⟨“ 𝐴 𝐵 𝐶 ”⟩ ∈ ( ∟G ‘ 𝐺 ) )
66 simpr ( ( 𝜑𝐴𝐵 ) → 𝐴𝐵 )
67 1 2 3 4 6 60 61 7 62 mirbtwn ( ( 𝜑𝐴𝐵 ) → 𝐴 ∈ ( ( 𝑀𝐵 ) 𝐼 𝐵 ) )
68 1 4 3 60 64 62 61 67 btwncolg1 ( ( 𝜑𝐴𝐵 ) → ( 𝐴 ∈ ( ( 𝑀𝐵 ) 𝐿 𝐵 ) ∨ ( 𝑀𝐵 ) = 𝐵 ) )
69 1 4 3 60 64 62 61 68 colcom ( ( 𝜑𝐴𝐵 ) → ( 𝐴 ∈ ( 𝐵 𝐿 ( 𝑀𝐵 ) ) ∨ 𝐵 = ( 𝑀𝐵 ) ) )
70 1 2 3 4 6 60 61 62 63 64 65 66 69 ragcol ( ( 𝜑𝐴𝐵 ) → ⟨“ ( 𝑀𝐵 ) 𝐵 𝐶 ”⟩ ∈ ( ∟G ‘ 𝐺 ) )
71 59 70 pm2.61dane ( 𝜑 → ⟨“ ( 𝑀𝐵 ) 𝐵 𝐶 ”⟩ ∈ ( ∟G ‘ 𝐺 ) )
72 1 2 3 4 6 5 48 11 12 71 7 10 mirrag ( 𝜑 → ⟨“ ( 𝑀 ‘ ( 𝑀𝐵 ) ) ( 𝑀𝐵 ) ( 𝑀𝐶 ) ”⟩ ∈ ( ∟G ‘ 𝐺 ) )
73 47 72 eqeltrrd ( 𝜑 → ⟨“ 𝐵 ( 𝑀𝐵 ) ( 𝑀𝐶 ) ”⟩ ∈ ( ∟G ‘ 𝐺 ) )
74 1 2 3 4 6 5 11 48 17 israg ( 𝜑 → ( ⟨“ 𝐵 ( 𝑀𝐵 ) ( 𝑀𝐶 ) ”⟩ ∈ ( ∟G ‘ 𝐺 ) ↔ ( 𝐵 ( 𝑀𝐶 ) ) = ( 𝐵 ( ( 𝑆 ‘ ( 𝑀𝐵 ) ) ‘ ( 𝑀𝐶 ) ) ) ) )
75 73 74 mpbid ( 𝜑 → ( 𝐵 ( 𝑀𝐶 ) ) = ( 𝐵 ( ( 𝑆 ‘ ( 𝑀𝐵 ) ) ‘ ( 𝑀𝐶 ) ) ) )
76 1 2 3 4 6 5 10 7 12 11 mirmir2 ( 𝜑 → ( 𝑀 ‘ ( ( 𝑆𝐵 ) ‘ 𝐶 ) ) = ( ( 𝑆 ‘ ( 𝑀𝐵 ) ) ‘ ( 𝑀𝐶 ) ) )
77 76 oveq2d ( 𝜑 → ( 𝐵 ( 𝑀 ‘ ( ( 𝑆𝐵 ) ‘ 𝐶 ) ) ) = ( 𝐵 ( ( 𝑆 ‘ ( 𝑀𝐵 ) ) ‘ ( 𝑀𝐶 ) ) ) )
78 75 77 eqtr4d ( 𝜑 → ( 𝐵 ( 𝑀𝐶 ) ) = ( 𝐵 ( 𝑀 ‘ ( ( 𝑆𝐵 ) ‘ 𝐶 ) ) ) )
79 1 2 3 5 11 17 11 20 78 tgcgrcomlr ( 𝜑 → ( ( 𝑀𝐶 ) 𝐵 ) = ( ( 𝑀 ‘ ( ( 𝑆𝐵 ) ‘ 𝐶 ) ) 𝐵 ) )
80 1 2 3 4 6 5 11 18 12 mircgr ( 𝜑 → ( 𝐵 ( ( 𝑆𝐵 ) ‘ 𝐶 ) ) = ( 𝐵 𝐶 ) )
81 1 2 3 5 11 19 11 12 80 tgcgrcomlr ( 𝜑 → ( ( ( 𝑆𝐵 ) ‘ 𝐶 ) 𝐵 ) = ( 𝐶 𝐵 ) )
82 1 2 3 5 17 13 19 11 20 16 12 11 28 33 37 43 79 81 tgifscgr ( 𝜑 → ( 𝑄 𝐵 ) = ( ( 𝑀𝑄 ) 𝐵 ) )
83 1 2 3 5 13 11 16 11 82 tgcgrcomlr ( 𝜑 → ( 𝐵 𝑄 ) = ( 𝐵 ( 𝑀𝑄 ) ) )
84 7 fveq1i ( 𝑀𝑄 ) = ( ( 𝑆𝐴 ) ‘ 𝑄 )
85 84 oveq2i ( 𝐵 ( 𝑀𝑄 ) ) = ( 𝐵 ( ( 𝑆𝐴 ) ‘ 𝑄 ) )
86 83 85 eqtrdi ( 𝜑 → ( 𝐵 𝑄 ) = ( 𝐵 ( ( 𝑆𝐴 ) ‘ 𝑄 ) ) )
87 1 2 3 4 6 5 11 10 13 israg ( 𝜑 → ( ⟨“ 𝐵 𝐴 𝑄 ”⟩ ∈ ( ∟G ‘ 𝐺 ) ↔ ( 𝐵 𝑄 ) = ( 𝐵 ( ( 𝑆𝐴 ) ‘ 𝑄 ) ) ) )
88 86 87 mpbird ( 𝜑 → ⟨“ 𝐵 𝐴 𝑄 ”⟩ ∈ ( ∟G ‘ 𝐺 ) )