| Step |
Hyp |
Ref |
Expression |
| 1 |
|
colperpex.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
| 2 |
|
colperpex.d |
⊢ − = ( dist ‘ 𝐺 ) |
| 3 |
|
colperpex.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
| 4 |
|
colperpex.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
| 5 |
|
colperpex.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
| 6 |
|
colperpexlem.s |
⊢ 𝑆 = ( pInvG ‘ 𝐺 ) |
| 7 |
|
colperpexlem.m |
⊢ 𝑀 = ( 𝑆 ‘ 𝐴 ) |
| 8 |
|
colperpexlem.n |
⊢ 𝑁 = ( 𝑆 ‘ 𝐵 ) |
| 9 |
|
colperpexlem.k |
⊢ 𝐾 = ( 𝑆 ‘ 𝑄 ) |
| 10 |
|
colperpexlem.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
| 11 |
|
colperpexlem.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
| 12 |
|
colperpexlem.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
| 13 |
|
colperpexlem.q |
⊢ ( 𝜑 → 𝑄 ∈ 𝑃 ) |
| 14 |
|
colperpexlem.1 |
⊢ ( 𝜑 → 〈“ 𝐴 𝐵 𝐶 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
| 15 |
|
colperpexlem.2 |
⊢ ( 𝜑 → ( 𝐾 ‘ ( 𝑀 ‘ 𝐶 ) ) = ( 𝑁 ‘ 𝐶 ) ) |
| 16 |
|
colperpexlem2.e |
⊢ ( 𝜑 → 𝐵 ≠ 𝐶 ) |
| 17 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝑄 ) → 𝐴 = 𝑄 ) |
| 18 |
17
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝑄 ) → ( 𝑆 ‘ 𝐴 ) = ( 𝑆 ‘ 𝑄 ) ) |
| 19 |
18 7 9
|
3eqtr4g |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝑄 ) → 𝑀 = 𝐾 ) |
| 20 |
19
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝑄 ) → ( 𝑀 ‘ ( 𝑀 ‘ 𝐶 ) ) = ( 𝐾 ‘ ( 𝑀 ‘ 𝐶 ) ) ) |
| 21 |
1 2 3 4 6 5 10 7 12
|
mirmir |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑀 ‘ 𝐶 ) ) = 𝐶 ) |
| 22 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝑄 ) → ( 𝑀 ‘ ( 𝑀 ‘ 𝐶 ) ) = 𝐶 ) |
| 23 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝑄 ) → ( 𝐾 ‘ ( 𝑀 ‘ 𝐶 ) ) = ( 𝑁 ‘ 𝐶 ) ) |
| 24 |
20 22 23
|
3eqtr3rd |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝑄 ) → ( 𝑁 ‘ 𝐶 ) = 𝐶 ) |
| 25 |
1 2 3 4 6 5 11 8 12
|
mirinv |
⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝐶 ) = 𝐶 ↔ 𝐵 = 𝐶 ) ) |
| 26 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝑄 ) → ( ( 𝑁 ‘ 𝐶 ) = 𝐶 ↔ 𝐵 = 𝐶 ) ) |
| 27 |
24 26
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝑄 ) → 𝐵 = 𝐶 ) |
| 28 |
27
|
ex |
⊢ ( 𝜑 → ( 𝐴 = 𝑄 → 𝐵 = 𝐶 ) ) |
| 29 |
28
|
necon3ad |
⊢ ( 𝜑 → ( 𝐵 ≠ 𝐶 → ¬ 𝐴 = 𝑄 ) ) |
| 30 |
16 29
|
mpd |
⊢ ( 𝜑 → ¬ 𝐴 = 𝑄 ) |
| 31 |
30
|
neqned |
⊢ ( 𝜑 → 𝐴 ≠ 𝑄 ) |