Metamath Proof Explorer


Theorem colperpexlem2

Description: Lemma for colperpex . Second part of lemma 8.20 of Schwabhauser p. 62. (Contributed by Thierry Arnoux, 10-Nov-2019)

Ref Expression
Hypotheses colperpex.p 𝑃 = ( Base ‘ 𝐺 )
colperpex.d = ( dist ‘ 𝐺 )
colperpex.i 𝐼 = ( Itv ‘ 𝐺 )
colperpex.l 𝐿 = ( LineG ‘ 𝐺 )
colperpex.g ( 𝜑𝐺 ∈ TarskiG )
colperpexlem.s 𝑆 = ( pInvG ‘ 𝐺 )
colperpexlem.m 𝑀 = ( 𝑆𝐴 )
colperpexlem.n 𝑁 = ( 𝑆𝐵 )
colperpexlem.k 𝐾 = ( 𝑆𝑄 )
colperpexlem.a ( 𝜑𝐴𝑃 )
colperpexlem.b ( 𝜑𝐵𝑃 )
colperpexlem.c ( 𝜑𝐶𝑃 )
colperpexlem.q ( 𝜑𝑄𝑃 )
colperpexlem.1 ( 𝜑 → ⟨“ 𝐴 𝐵 𝐶 ”⟩ ∈ ( ∟G ‘ 𝐺 ) )
colperpexlem.2 ( 𝜑 → ( 𝐾 ‘ ( 𝑀𝐶 ) ) = ( 𝑁𝐶 ) )
colperpexlem2.e ( 𝜑𝐵𝐶 )
Assertion colperpexlem2 ( 𝜑𝐴𝑄 )

Proof

Step Hyp Ref Expression
1 colperpex.p 𝑃 = ( Base ‘ 𝐺 )
2 colperpex.d = ( dist ‘ 𝐺 )
3 colperpex.i 𝐼 = ( Itv ‘ 𝐺 )
4 colperpex.l 𝐿 = ( LineG ‘ 𝐺 )
5 colperpex.g ( 𝜑𝐺 ∈ TarskiG )
6 colperpexlem.s 𝑆 = ( pInvG ‘ 𝐺 )
7 colperpexlem.m 𝑀 = ( 𝑆𝐴 )
8 colperpexlem.n 𝑁 = ( 𝑆𝐵 )
9 colperpexlem.k 𝐾 = ( 𝑆𝑄 )
10 colperpexlem.a ( 𝜑𝐴𝑃 )
11 colperpexlem.b ( 𝜑𝐵𝑃 )
12 colperpexlem.c ( 𝜑𝐶𝑃 )
13 colperpexlem.q ( 𝜑𝑄𝑃 )
14 colperpexlem.1 ( 𝜑 → ⟨“ 𝐴 𝐵 𝐶 ”⟩ ∈ ( ∟G ‘ 𝐺 ) )
15 colperpexlem.2 ( 𝜑 → ( 𝐾 ‘ ( 𝑀𝐶 ) ) = ( 𝑁𝐶 ) )
16 colperpexlem2.e ( 𝜑𝐵𝐶 )
17 simpr ( ( 𝜑𝐴 = 𝑄 ) → 𝐴 = 𝑄 )
18 17 fveq2d ( ( 𝜑𝐴 = 𝑄 ) → ( 𝑆𝐴 ) = ( 𝑆𝑄 ) )
19 18 7 9 3eqtr4g ( ( 𝜑𝐴 = 𝑄 ) → 𝑀 = 𝐾 )
20 19 fveq1d ( ( 𝜑𝐴 = 𝑄 ) → ( 𝑀 ‘ ( 𝑀𝐶 ) ) = ( 𝐾 ‘ ( 𝑀𝐶 ) ) )
21 1 2 3 4 6 5 10 7 12 mirmir ( 𝜑 → ( 𝑀 ‘ ( 𝑀𝐶 ) ) = 𝐶 )
22 21 adantr ( ( 𝜑𝐴 = 𝑄 ) → ( 𝑀 ‘ ( 𝑀𝐶 ) ) = 𝐶 )
23 15 adantr ( ( 𝜑𝐴 = 𝑄 ) → ( 𝐾 ‘ ( 𝑀𝐶 ) ) = ( 𝑁𝐶 ) )
24 20 22 23 3eqtr3rd ( ( 𝜑𝐴 = 𝑄 ) → ( 𝑁𝐶 ) = 𝐶 )
25 1 2 3 4 6 5 11 8 12 mirinv ( 𝜑 → ( ( 𝑁𝐶 ) = 𝐶𝐵 = 𝐶 ) )
26 25 adantr ( ( 𝜑𝐴 = 𝑄 ) → ( ( 𝑁𝐶 ) = 𝐶𝐵 = 𝐶 ) )
27 24 26 mpbid ( ( 𝜑𝐴 = 𝑄 ) → 𝐵 = 𝐶 )
28 27 ex ( 𝜑 → ( 𝐴 = 𝑄𝐵 = 𝐶 ) )
29 28 necon3ad ( 𝜑 → ( 𝐵𝐶 → ¬ 𝐴 = 𝑄 ) )
30 16 29 mpd ( 𝜑 → ¬ 𝐴 = 𝑄 )
31 30 neqned ( 𝜑𝐴𝑄 )