| Step |
Hyp |
Ref |
Expression |
| 1 |
|
colperpex.p |
|- P = ( Base ` G ) |
| 2 |
|
colperpex.d |
|- .- = ( dist ` G ) |
| 3 |
|
colperpex.i |
|- I = ( Itv ` G ) |
| 4 |
|
colperpex.l |
|- L = ( LineG ` G ) |
| 5 |
|
colperpex.g |
|- ( ph -> G e. TarskiG ) |
| 6 |
|
colperpexlem.s |
|- S = ( pInvG ` G ) |
| 7 |
|
colperpexlem.m |
|- M = ( S ` A ) |
| 8 |
|
colperpexlem.n |
|- N = ( S ` B ) |
| 9 |
|
colperpexlem.k |
|- K = ( S ` Q ) |
| 10 |
|
colperpexlem.a |
|- ( ph -> A e. P ) |
| 11 |
|
colperpexlem.b |
|- ( ph -> B e. P ) |
| 12 |
|
colperpexlem.c |
|- ( ph -> C e. P ) |
| 13 |
|
colperpexlem.q |
|- ( ph -> Q e. P ) |
| 14 |
|
colperpexlem.1 |
|- ( ph -> <" A B C "> e. ( raG ` G ) ) |
| 15 |
|
colperpexlem.2 |
|- ( ph -> ( K ` ( M ` C ) ) = ( N ` C ) ) |
| 16 |
|
colperpexlem2.e |
|- ( ph -> B =/= C ) |
| 17 |
|
simpr |
|- ( ( ph /\ A = Q ) -> A = Q ) |
| 18 |
17
|
fveq2d |
|- ( ( ph /\ A = Q ) -> ( S ` A ) = ( S ` Q ) ) |
| 19 |
18 7 9
|
3eqtr4g |
|- ( ( ph /\ A = Q ) -> M = K ) |
| 20 |
19
|
fveq1d |
|- ( ( ph /\ A = Q ) -> ( M ` ( M ` C ) ) = ( K ` ( M ` C ) ) ) |
| 21 |
1 2 3 4 6 5 10 7 12
|
mirmir |
|- ( ph -> ( M ` ( M ` C ) ) = C ) |
| 22 |
21
|
adantr |
|- ( ( ph /\ A = Q ) -> ( M ` ( M ` C ) ) = C ) |
| 23 |
15
|
adantr |
|- ( ( ph /\ A = Q ) -> ( K ` ( M ` C ) ) = ( N ` C ) ) |
| 24 |
20 22 23
|
3eqtr3rd |
|- ( ( ph /\ A = Q ) -> ( N ` C ) = C ) |
| 25 |
1 2 3 4 6 5 11 8 12
|
mirinv |
|- ( ph -> ( ( N ` C ) = C <-> B = C ) ) |
| 26 |
25
|
adantr |
|- ( ( ph /\ A = Q ) -> ( ( N ` C ) = C <-> B = C ) ) |
| 27 |
24 26
|
mpbid |
|- ( ( ph /\ A = Q ) -> B = C ) |
| 28 |
27
|
ex |
|- ( ph -> ( A = Q -> B = C ) ) |
| 29 |
28
|
necon3ad |
|- ( ph -> ( B =/= C -> -. A = Q ) ) |
| 30 |
16 29
|
mpd |
|- ( ph -> -. A = Q ) |
| 31 |
30
|
neqned |
|- ( ph -> A =/= Q ) |