| Step | Hyp | Ref | Expression | 
						
							| 1 |  | colperpex.p |  |-  P = ( Base ` G ) | 
						
							| 2 |  | colperpex.d |  |-  .- = ( dist ` G ) | 
						
							| 3 |  | colperpex.i |  |-  I = ( Itv ` G ) | 
						
							| 4 |  | colperpex.l |  |-  L = ( LineG ` G ) | 
						
							| 5 |  | colperpex.g |  |-  ( ph -> G e. TarskiG ) | 
						
							| 6 |  | colperpex.1 |  |-  ( ph -> A e. P ) | 
						
							| 7 |  | colperpex.2 |  |-  ( ph -> B e. P ) | 
						
							| 8 |  | colperpex.3 |  |-  ( ph -> C e. P ) | 
						
							| 9 |  | colperpex.4 |  |-  ( ph -> A =/= B ) | 
						
							| 10 |  | colperpexlem3.1 |  |-  ( ph -> -. C e. ( A L B ) ) | 
						
							| 11 |  | eqid |  |-  ( pInvG ` G ) = ( pInvG ` G ) | 
						
							| 12 | 5 | ad2antrr |  |-  ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) -> G e. TarskiG ) | 
						
							| 13 |  | eqid |  |-  ( ( pInvG ` G ) ` p ) = ( ( pInvG ` G ) ` p ) | 
						
							| 14 | 1 3 4 5 6 7 9 | tgelrnln |  |-  ( ph -> ( A L B ) e. ran L ) | 
						
							| 15 | 14 | ad2antrr |  |-  ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) -> ( A L B ) e. ran L ) | 
						
							| 16 |  | simplr |  |-  ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) -> x e. ( A L B ) ) | 
						
							| 17 | 1 4 3 12 15 16 | tglnpt |  |-  ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) -> x e. P ) | 
						
							| 18 |  | eqid |  |-  ( ( pInvG ` G ) ` x ) = ( ( pInvG ` G ) ` x ) | 
						
							| 19 | 8 | ad2antrr |  |-  ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) -> C e. P ) | 
						
							| 20 | 1 2 3 4 11 12 17 18 19 | mircl |  |-  ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) -> ( ( ( pInvG ` G ) ` x ) ` C ) e. P ) | 
						
							| 21 | 6 | ad2antrr |  |-  ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) -> A e. P ) | 
						
							| 22 |  | eqid |  |-  ( ( pInvG ` G ) ` A ) = ( ( pInvG ` G ) ` A ) | 
						
							| 23 | 1 2 3 4 11 12 21 22 19 | mircl |  |-  ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) -> ( ( ( pInvG ` G ) ` A ) ` C ) e. P ) | 
						
							| 24 | 1 2 3 4 11 12 21 22 19 | mircgr |  |-  ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) -> ( A .- ( ( ( pInvG ` G ) ` A ) ` C ) ) = ( A .- C ) ) | 
						
							| 25 | 7 | ad2antrr |  |-  ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) -> B e. P ) | 
						
							| 26 | 10 | ad2antrr |  |-  ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) -> -. C e. ( A L B ) ) | 
						
							| 27 |  | nelne2 |  |-  ( ( x e. ( A L B ) /\ -. C e. ( A L B ) ) -> x =/= C ) | 
						
							| 28 | 16 26 27 | syl2anc |  |-  ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) -> x =/= C ) | 
						
							| 29 | 1 3 4 12 17 19 28 | tgelrnln |  |-  ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) -> ( x L C ) e. ran L ) | 
						
							| 30 | 1 3 4 12 17 19 28 | tglinecom |  |-  ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) -> ( x L C ) = ( C L x ) ) | 
						
							| 31 |  | simpr |  |-  ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) -> ( C L x ) ( perpG ` G ) ( A L B ) ) | 
						
							| 32 | 30 31 | eqbrtrd |  |-  ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) -> ( x L C ) ( perpG ` G ) ( A L B ) ) | 
						
							| 33 | 1 2 3 4 12 29 15 32 | perpcom |  |-  ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) -> ( A L B ) ( perpG ` G ) ( x L C ) ) | 
						
							| 34 | 1 2 3 4 12 21 25 16 19 33 | perprag |  |-  ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) -> <" A x C "> e. ( raG ` G ) ) | 
						
							| 35 | 1 2 3 4 11 12 21 17 19 | israg |  |-  ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) -> ( <" A x C "> e. ( raG ` G ) <-> ( A .- C ) = ( A .- ( ( ( pInvG ` G ) ` x ) ` C ) ) ) ) | 
						
							| 36 | 34 35 | mpbid |  |-  ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) -> ( A .- C ) = ( A .- ( ( ( pInvG ` G ) ` x ) ` C ) ) ) | 
						
							| 37 | 24 36 | eqtr2d |  |-  ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) -> ( A .- ( ( ( pInvG ` G ) ` x ) ` C ) ) = ( A .- ( ( ( pInvG ` G ) ` A ) ` C ) ) ) | 
						
							| 38 | 1 2 3 4 11 12 13 20 23 21 37 | midexlem |  |-  ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) -> E. p e. P ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) | 
						
							| 39 | 12 | ad2antrr |  |-  ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> G e. TarskiG ) | 
						
							| 40 | 23 | ad2antrr |  |-  ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> ( ( ( pInvG ` G ) ` A ) ` C ) e. P ) | 
						
							| 41 | 21 | ad2antrr |  |-  ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> A e. P ) | 
						
							| 42 | 19 | ad2antrr |  |-  ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> C e. P ) | 
						
							| 43 | 20 | ad2antrr |  |-  ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> ( ( ( pInvG ` G ) ` x ) ` C ) e. P ) | 
						
							| 44 | 17 | ad2antrr |  |-  ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> x e. P ) | 
						
							| 45 |  | simplr |  |-  ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> p e. P ) | 
						
							| 46 | 1 2 3 4 11 39 41 22 42 | mirbtwn |  |-  ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> A e. ( ( ( ( pInvG ` G ) ` A ) ` C ) I C ) ) | 
						
							| 47 | 1 2 3 4 11 39 44 18 42 | mirbtwn |  |-  ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> x e. ( ( ( ( pInvG ` G ) ` x ) ` C ) I C ) ) | 
						
							| 48 | 1 2 3 4 11 39 45 13 43 | mirbtwn |  |-  ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> p e. ( ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) I ( ( ( pInvG ` G ) ` x ) ` C ) ) ) | 
						
							| 49 |  | simpr |  |-  ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) | 
						
							| 50 | 49 | eqcomd |  |-  ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) = ( ( ( pInvG ` G ) ` A ) ` C ) ) | 
						
							| 51 | 50 | oveq1d |  |-  ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> ( ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) I ( ( ( pInvG ` G ) ` x ) ` C ) ) = ( ( ( ( pInvG ` G ) ` A ) ` C ) I ( ( ( pInvG ` G ) ` x ) ` C ) ) ) | 
						
							| 52 | 48 51 | eleqtrd |  |-  ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> p e. ( ( ( ( pInvG ` G ) ` A ) ` C ) I ( ( ( pInvG ` G ) ` x ) ` C ) ) ) | 
						
							| 53 | 1 2 3 39 40 41 42 43 44 45 46 47 52 | tgtrisegint |  |-  ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> E. t e. P ( t e. ( p I C ) /\ t e. ( A I x ) ) ) | 
						
							| 54 | 39 | ad3antrrr |  |-  ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> G e. TarskiG ) | 
						
							| 55 | 41 | ad3antrrr |  |-  ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> A e. P ) | 
						
							| 56 |  | simpllr |  |-  ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> t e. P ) | 
						
							| 57 |  | simplrr |  |-  ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> t e. ( A I x ) ) | 
						
							| 58 |  | simpr |  |-  ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> x = A ) | 
						
							| 59 | 58 | oveq2d |  |-  ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> ( A I x ) = ( A I A ) ) | 
						
							| 60 | 57 59 | eleqtrd |  |-  ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> t e. ( A I A ) ) | 
						
							| 61 | 1 2 3 54 55 56 60 | axtgbtwnid |  |-  ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> A = t ) | 
						
							| 62 | 61 | eqcomd |  |-  ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> t = A ) | 
						
							| 63 | 62 | oveq1d |  |-  ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> ( t L p ) = ( A L p ) ) | 
						
							| 64 | 50 | ad3antrrr |  |-  ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) = ( ( ( pInvG ` G ) ` A ) ` C ) ) | 
						
							| 65 | 58 | fveq2d |  |-  ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> ( ( pInvG ` G ) ` x ) = ( ( pInvG ` G ) ` A ) ) | 
						
							| 66 | 65 | fveq1d |  |-  ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> ( ( ( pInvG ` G ) ` x ) ` C ) = ( ( ( pInvG ` G ) ` A ) ` C ) ) | 
						
							| 67 | 64 66 | eqtr4d |  |-  ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) = ( ( ( pInvG ` G ) ` x ) ` C ) ) | 
						
							| 68 | 45 | ad3antrrr |  |-  ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> p e. P ) | 
						
							| 69 | 43 | ad3antrrr |  |-  ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> ( ( ( pInvG ` G ) ` x ) ` C ) e. P ) | 
						
							| 70 | 1 2 3 4 11 54 68 13 69 | mirinv |  |-  ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> ( ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) = ( ( ( pInvG ` G ) ` x ) ` C ) <-> p = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) | 
						
							| 71 | 67 70 | mpbid |  |-  ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> p = ( ( ( pInvG ` G ) ` x ) ` C ) ) | 
						
							| 72 | 44 | ad3antrrr |  |-  ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> x e. P ) | 
						
							| 73 | 58 | oveq1d |  |-  ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> ( x I x ) = ( A I x ) ) | 
						
							| 74 | 57 73 | eleqtrrd |  |-  ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> t e. ( x I x ) ) | 
						
							| 75 | 1 2 3 54 72 56 74 | axtgbtwnid |  |-  ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> x = t ) | 
						
							| 76 | 75 | eqcomd |  |-  ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> t = x ) | 
						
							| 77 | 71 76 | oveq12d |  |-  ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> ( p L t ) = ( ( ( ( pInvG ` G ) ` x ) ` C ) L x ) ) | 
						
							| 78 | 34 | ad2antrr |  |-  ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> <" A x C "> e. ( raG ` G ) ) | 
						
							| 79 | 1 2 3 4 11 39 45 13 43 50 | mircom |  |-  ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` A ) ` C ) ) = ( ( ( pInvG ` G ) ` x ) ` C ) ) | 
						
							| 80 | 28 | ad2antrr |  |-  ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> x =/= C ) | 
						
							| 81 | 1 2 3 4 39 11 22 18 13 41 44 42 45 78 79 80 | colperpexlem2 |  |-  ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> A =/= p ) | 
						
							| 82 | 81 | ad3antrrr |  |-  ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> A =/= p ) | 
						
							| 83 | 62 82 | eqnetrd |  |-  ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> t =/= p ) | 
						
							| 84 | 1 3 4 54 56 68 83 | tglinecom |  |-  ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> ( t L p ) = ( p L t ) ) | 
						
							| 85 | 42 | ad3antrrr |  |-  ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> C e. P ) | 
						
							| 86 | 80 | ad3antrrr |  |-  ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> x =/= C ) | 
						
							| 87 | 54 | adantr |  |-  ( ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) /\ ( ( ( pInvG ` G ) ` x ) ` C ) = x ) -> G e. TarskiG ) | 
						
							| 88 | 72 | adantr |  |-  ( ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) /\ ( ( ( pInvG ` G ) ` x ) ` C ) = x ) -> x e. P ) | 
						
							| 89 | 85 | adantr |  |-  ( ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) /\ ( ( ( pInvG ` G ) ` x ) ` C ) = x ) -> C e. P ) | 
						
							| 90 | 1 2 3 4 11 87 88 18 | mircinv |  |-  ( ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) /\ ( ( ( pInvG ` G ) ` x ) ` C ) = x ) -> ( ( ( pInvG ` G ) ` x ) ` x ) = x ) | 
						
							| 91 |  | simpr |  |-  ( ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) /\ ( ( ( pInvG ` G ) ` x ) ` C ) = x ) -> ( ( ( pInvG ` G ) ` x ) ` C ) = x ) | 
						
							| 92 | 90 91 | eqtr4d |  |-  ( ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) /\ ( ( ( pInvG ` G ) ` x ) ` C ) = x ) -> ( ( ( pInvG ` G ) ` x ) ` x ) = ( ( ( pInvG ` G ) ` x ) ` C ) ) | 
						
							| 93 | 1 2 3 4 11 87 88 18 88 89 92 | mireq |  |-  ( ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) /\ ( ( ( pInvG ` G ) ` x ) ` C ) = x ) -> x = C ) | 
						
							| 94 | 86 | adantr |  |-  ( ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) /\ ( ( ( pInvG ` G ) ` x ) ` C ) = x ) -> x =/= C ) | 
						
							| 95 | 94 | neneqd |  |-  ( ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) /\ ( ( ( pInvG ` G ) ` x ) ` C ) = x ) -> -. x = C ) | 
						
							| 96 | 93 95 | pm2.65da |  |-  ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> -. ( ( ( pInvG ` G ) ` x ) ` C ) = x ) | 
						
							| 97 | 96 | neqned |  |-  ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> ( ( ( pInvG ` G ) ` x ) ` C ) =/= x ) | 
						
							| 98 | 47 | ad3antrrr |  |-  ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> x e. ( ( ( ( pInvG ` G ) ` x ) ` C ) I C ) ) | 
						
							| 99 | 1 3 4 54 72 85 69 86 98 | btwnlng2 |  |-  ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> ( ( ( pInvG ` G ) ` x ) ` C ) e. ( x L C ) ) | 
						
							| 100 | 1 3 4 54 72 85 86 69 97 99 | tglineelsb2 |  |-  ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> ( x L C ) = ( x L ( ( ( pInvG ` G ) ` x ) ` C ) ) ) | 
						
							| 101 | 28 | necomd |  |-  ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) -> C =/= x ) | 
						
							| 102 | 101 | ad5antr |  |-  ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> C =/= x ) | 
						
							| 103 | 1 3 4 54 85 72 102 | tglinecom |  |-  ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> ( C L x ) = ( x L C ) ) | 
						
							| 104 | 1 3 4 54 69 72 97 | tglinecom |  |-  ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> ( ( ( ( pInvG ` G ) ` x ) ` C ) L x ) = ( x L ( ( ( pInvG ` G ) ` x ) ` C ) ) ) | 
						
							| 105 | 100 103 104 | 3eqtr4d |  |-  ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> ( C L x ) = ( ( ( ( pInvG ` G ) ` x ) ` C ) L x ) ) | 
						
							| 106 | 77 84 105 | 3eqtr4d |  |-  ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> ( t L p ) = ( C L x ) ) | 
						
							| 107 | 63 106 | eqtr3d |  |-  ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> ( A L p ) = ( C L x ) ) | 
						
							| 108 | 31 | ad5antr |  |-  ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> ( C L x ) ( perpG ` G ) ( A L B ) ) | 
						
							| 109 | 107 108 | eqbrtrd |  |-  ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> ( A L p ) ( perpG ` G ) ( A L B ) ) | 
						
							| 110 | 39 | ad3antrrr |  |-  ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x =/= A ) -> G e. TarskiG ) | 
						
							| 111 | 41 | ad3antrrr |  |-  ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x =/= A ) -> A e. P ) | 
						
							| 112 | 45 | ad3antrrr |  |-  ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x =/= A ) -> p e. P ) | 
						
							| 113 | 81 | ad3antrrr |  |-  ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x =/= A ) -> A =/= p ) | 
						
							| 114 | 1 3 4 110 111 112 113 | tgelrnln |  |-  ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x =/= A ) -> ( A L p ) e. ran L ) | 
						
							| 115 | 15 | ad5antr |  |-  ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x =/= A ) -> ( A L B ) e. ran L ) | 
						
							| 116 | 1 3 4 110 111 112 113 | tglinerflx1 |  |-  ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x =/= A ) -> A e. ( A L p ) ) | 
						
							| 117 | 9 | ad2antrr |  |-  ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) -> A =/= B ) | 
						
							| 118 | 1 3 4 12 21 25 117 | tglinerflx1 |  |-  ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) -> A e. ( A L B ) ) | 
						
							| 119 | 118 | ad5antr |  |-  ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x =/= A ) -> A e. ( A L B ) ) | 
						
							| 120 | 116 119 | elind |  |-  ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x =/= A ) -> A e. ( ( A L p ) i^i ( A L B ) ) ) | 
						
							| 121 | 1 3 4 110 111 112 113 | tglinerflx2 |  |-  ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x =/= A ) -> p e. ( A L p ) ) | 
						
							| 122 | 16 | ad5antr |  |-  ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x =/= A ) -> x e. ( A L B ) ) | 
						
							| 123 | 113 | necomd |  |-  ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x =/= A ) -> p =/= A ) | 
						
							| 124 |  | simpr |  |-  ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x =/= A ) -> x =/= A ) | 
						
							| 125 | 44 | ad3antrrr |  |-  ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x =/= A ) -> x e. P ) | 
						
							| 126 | 1 2 3 4 39 11 22 18 13 41 44 42 45 78 79 | colperpexlem1 |  |-  ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> <" x A p "> e. ( raG ` G ) ) | 
						
							| 127 | 126 | ad3antrrr |  |-  ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x =/= A ) -> <" x A p "> e. ( raG ` G ) ) | 
						
							| 128 | 1 2 3 4 11 110 125 111 112 127 | ragcom |  |-  ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x =/= A ) -> <" p A x "> e. ( raG ` G ) ) | 
						
							| 129 | 1 2 3 4 110 114 115 120 121 122 123 124 128 | ragperp |  |-  ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x =/= A ) -> ( A L p ) ( perpG ` G ) ( A L B ) ) | 
						
							| 130 | 109 129 | pm2.61dane |  |-  ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) -> ( A L p ) ( perpG ` G ) ( A L B ) ) | 
						
							| 131 | 118 | ad5antr |  |-  ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> A e. ( A L B ) ) | 
						
							| 132 | 62 131 | eqeltrd |  |-  ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> t e. ( A L B ) ) | 
						
							| 133 | 132 | orcd |  |-  ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> ( t e. ( A L B ) \/ A = B ) ) | 
						
							| 134 | 25 | ad5antr |  |-  ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x =/= A ) -> B e. P ) | 
						
							| 135 | 117 | ad5antr |  |-  ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x =/= A ) -> A =/= B ) | 
						
							| 136 |  | simpllr |  |-  ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x =/= A ) -> t e. P ) | 
						
							| 137 | 124 | necomd |  |-  ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x =/= A ) -> A =/= x ) | 
						
							| 138 |  | simplrr |  |-  ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x =/= A ) -> t e. ( A I x ) ) | 
						
							| 139 | 1 3 4 110 111 125 136 137 138 | btwnlng1 |  |-  ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x =/= A ) -> t e. ( A L x ) ) | 
						
							| 140 | 1 3 4 110 111 134 135 125 124 122 136 139 | tglineeltr |  |-  ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x =/= A ) -> t e. ( A L B ) ) | 
						
							| 141 | 140 | orcd |  |-  ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x =/= A ) -> ( t e. ( A L B ) \/ A = B ) ) | 
						
							| 142 | 133 141 | pm2.61dane |  |-  ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) -> ( t e. ( A L B ) \/ A = B ) ) | 
						
							| 143 | 39 | ad2antrr |  |-  ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) -> G e. TarskiG ) | 
						
							| 144 | 45 | ad2antrr |  |-  ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) -> p e. P ) | 
						
							| 145 |  | simplr |  |-  ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) -> t e. P ) | 
						
							| 146 | 42 | ad2antrr |  |-  ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) -> C e. P ) | 
						
							| 147 |  | simprl |  |-  ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) -> t e. ( p I C ) ) | 
						
							| 148 | 1 2 3 143 144 145 146 147 | tgbtwncom |  |-  ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) -> t e. ( C I p ) ) | 
						
							| 149 | 130 142 148 | jca32 |  |-  ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) -> ( ( A L p ) ( perpG ` G ) ( A L B ) /\ ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( C I p ) ) ) ) | 
						
							| 150 | 149 | ex |  |-  ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) -> ( ( t e. ( p I C ) /\ t e. ( A I x ) ) -> ( ( A L p ) ( perpG ` G ) ( A L B ) /\ ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( C I p ) ) ) ) ) | 
						
							| 151 | 150 | reximdva |  |-  ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> ( E. t e. P ( t e. ( p I C ) /\ t e. ( A I x ) ) -> E. t e. P ( ( A L p ) ( perpG ` G ) ( A L B ) /\ ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( C I p ) ) ) ) ) | 
						
							| 152 | 53 151 | mpd |  |-  ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> E. t e. P ( ( A L p ) ( perpG ` G ) ( A L B ) /\ ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( C I p ) ) ) ) | 
						
							| 153 |  | r19.42v |  |-  ( E. t e. P ( ( A L p ) ( perpG ` G ) ( A L B ) /\ ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( C I p ) ) ) <-> ( ( A L p ) ( perpG ` G ) ( A L B ) /\ E. t e. P ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( C I p ) ) ) ) | 
						
							| 154 | 152 153 | sylib |  |-  ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> ( ( A L p ) ( perpG ` G ) ( A L B ) /\ E. t e. P ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( C I p ) ) ) ) | 
						
							| 155 | 154 | ex |  |-  ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) -> ( ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) -> ( ( A L p ) ( perpG ` G ) ( A L B ) /\ E. t e. P ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( C I p ) ) ) ) ) | 
						
							| 156 | 155 | reximdva |  |-  ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) -> ( E. p e. P ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) -> E. p e. P ( ( A L p ) ( perpG ` G ) ( A L B ) /\ E. t e. P ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( C I p ) ) ) ) ) | 
						
							| 157 | 38 156 | mpd |  |-  ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) -> E. p e. P ( ( A L p ) ( perpG ` G ) ( A L B ) /\ E. t e. P ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( C I p ) ) ) ) | 
						
							| 158 | 1 2 3 4 5 14 8 10 | footex |  |-  ( ph -> E. x e. ( A L B ) ( C L x ) ( perpG ` G ) ( A L B ) ) | 
						
							| 159 | 157 158 | r19.29a |  |-  ( ph -> E. p e. P ( ( A L p ) ( perpG ` G ) ( A L B ) /\ E. t e. P ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( C I p ) ) ) ) |