| Step |
Hyp |
Ref |
Expression |
| 1 |
|
colperpex.p |
|- P = ( Base ` G ) |
| 2 |
|
colperpex.d |
|- .- = ( dist ` G ) |
| 3 |
|
colperpex.i |
|- I = ( Itv ` G ) |
| 4 |
|
colperpex.l |
|- L = ( LineG ` G ) |
| 5 |
|
colperpex.g |
|- ( ph -> G e. TarskiG ) |
| 6 |
|
colperpex.1 |
|- ( ph -> A e. P ) |
| 7 |
|
colperpex.2 |
|- ( ph -> B e. P ) |
| 8 |
|
colperpex.3 |
|- ( ph -> C e. P ) |
| 9 |
|
colperpex.4 |
|- ( ph -> A =/= B ) |
| 10 |
|
colperpexlem3.1 |
|- ( ph -> -. C e. ( A L B ) ) |
| 11 |
|
eqid |
|- ( pInvG ` G ) = ( pInvG ` G ) |
| 12 |
5
|
ad2antrr |
|- ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) -> G e. TarskiG ) |
| 13 |
|
eqid |
|- ( ( pInvG ` G ) ` p ) = ( ( pInvG ` G ) ` p ) |
| 14 |
1 3 4 5 6 7 9
|
tgelrnln |
|- ( ph -> ( A L B ) e. ran L ) |
| 15 |
14
|
ad2antrr |
|- ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) -> ( A L B ) e. ran L ) |
| 16 |
|
simplr |
|- ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) -> x e. ( A L B ) ) |
| 17 |
1 4 3 12 15 16
|
tglnpt |
|- ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) -> x e. P ) |
| 18 |
|
eqid |
|- ( ( pInvG ` G ) ` x ) = ( ( pInvG ` G ) ` x ) |
| 19 |
8
|
ad2antrr |
|- ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) -> C e. P ) |
| 20 |
1 2 3 4 11 12 17 18 19
|
mircl |
|- ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) -> ( ( ( pInvG ` G ) ` x ) ` C ) e. P ) |
| 21 |
6
|
ad2antrr |
|- ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) -> A e. P ) |
| 22 |
|
eqid |
|- ( ( pInvG ` G ) ` A ) = ( ( pInvG ` G ) ` A ) |
| 23 |
1 2 3 4 11 12 21 22 19
|
mircl |
|- ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) -> ( ( ( pInvG ` G ) ` A ) ` C ) e. P ) |
| 24 |
1 2 3 4 11 12 21 22 19
|
mircgr |
|- ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) -> ( A .- ( ( ( pInvG ` G ) ` A ) ` C ) ) = ( A .- C ) ) |
| 25 |
7
|
ad2antrr |
|- ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) -> B e. P ) |
| 26 |
10
|
ad2antrr |
|- ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) -> -. C e. ( A L B ) ) |
| 27 |
|
nelne2 |
|- ( ( x e. ( A L B ) /\ -. C e. ( A L B ) ) -> x =/= C ) |
| 28 |
16 26 27
|
syl2anc |
|- ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) -> x =/= C ) |
| 29 |
1 3 4 12 17 19 28
|
tgelrnln |
|- ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) -> ( x L C ) e. ran L ) |
| 30 |
1 3 4 12 17 19 28
|
tglinecom |
|- ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) -> ( x L C ) = ( C L x ) ) |
| 31 |
|
simpr |
|- ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) -> ( C L x ) ( perpG ` G ) ( A L B ) ) |
| 32 |
30 31
|
eqbrtrd |
|- ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) -> ( x L C ) ( perpG ` G ) ( A L B ) ) |
| 33 |
1 2 3 4 12 29 15 32
|
perpcom |
|- ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) -> ( A L B ) ( perpG ` G ) ( x L C ) ) |
| 34 |
1 2 3 4 12 21 25 16 19 33
|
perprag |
|- ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) -> <" A x C "> e. ( raG ` G ) ) |
| 35 |
1 2 3 4 11 12 21 17 19
|
israg |
|- ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) -> ( <" A x C "> e. ( raG ` G ) <-> ( A .- C ) = ( A .- ( ( ( pInvG ` G ) ` x ) ` C ) ) ) ) |
| 36 |
34 35
|
mpbid |
|- ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) -> ( A .- C ) = ( A .- ( ( ( pInvG ` G ) ` x ) ` C ) ) ) |
| 37 |
24 36
|
eqtr2d |
|- ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) -> ( A .- ( ( ( pInvG ` G ) ` x ) ` C ) ) = ( A .- ( ( ( pInvG ` G ) ` A ) ` C ) ) ) |
| 38 |
1 2 3 4 11 12 13 20 23 21 37
|
midexlem |
|- ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) -> E. p e. P ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) |
| 39 |
12
|
ad2antrr |
|- ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> G e. TarskiG ) |
| 40 |
23
|
ad2antrr |
|- ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> ( ( ( pInvG ` G ) ` A ) ` C ) e. P ) |
| 41 |
21
|
ad2antrr |
|- ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> A e. P ) |
| 42 |
19
|
ad2antrr |
|- ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> C e. P ) |
| 43 |
20
|
ad2antrr |
|- ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> ( ( ( pInvG ` G ) ` x ) ` C ) e. P ) |
| 44 |
17
|
ad2antrr |
|- ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> x e. P ) |
| 45 |
|
simplr |
|- ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> p e. P ) |
| 46 |
1 2 3 4 11 39 41 22 42
|
mirbtwn |
|- ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> A e. ( ( ( ( pInvG ` G ) ` A ) ` C ) I C ) ) |
| 47 |
1 2 3 4 11 39 44 18 42
|
mirbtwn |
|- ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> x e. ( ( ( ( pInvG ` G ) ` x ) ` C ) I C ) ) |
| 48 |
1 2 3 4 11 39 45 13 43
|
mirbtwn |
|- ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> p e. ( ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) I ( ( ( pInvG ` G ) ` x ) ` C ) ) ) |
| 49 |
|
simpr |
|- ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) |
| 50 |
49
|
eqcomd |
|- ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) = ( ( ( pInvG ` G ) ` A ) ` C ) ) |
| 51 |
50
|
oveq1d |
|- ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> ( ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) I ( ( ( pInvG ` G ) ` x ) ` C ) ) = ( ( ( ( pInvG ` G ) ` A ) ` C ) I ( ( ( pInvG ` G ) ` x ) ` C ) ) ) |
| 52 |
48 51
|
eleqtrd |
|- ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> p e. ( ( ( ( pInvG ` G ) ` A ) ` C ) I ( ( ( pInvG ` G ) ` x ) ` C ) ) ) |
| 53 |
1 2 3 39 40 41 42 43 44 45 46 47 52
|
tgtrisegint |
|- ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> E. t e. P ( t e. ( p I C ) /\ t e. ( A I x ) ) ) |
| 54 |
39
|
ad3antrrr |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> G e. TarskiG ) |
| 55 |
41
|
ad3antrrr |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> A e. P ) |
| 56 |
|
simpllr |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> t e. P ) |
| 57 |
|
simplrr |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> t e. ( A I x ) ) |
| 58 |
|
simpr |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> x = A ) |
| 59 |
58
|
oveq2d |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> ( A I x ) = ( A I A ) ) |
| 60 |
57 59
|
eleqtrd |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> t e. ( A I A ) ) |
| 61 |
1 2 3 54 55 56 60
|
axtgbtwnid |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> A = t ) |
| 62 |
61
|
eqcomd |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> t = A ) |
| 63 |
62
|
oveq1d |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> ( t L p ) = ( A L p ) ) |
| 64 |
50
|
ad3antrrr |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) = ( ( ( pInvG ` G ) ` A ) ` C ) ) |
| 65 |
58
|
fveq2d |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> ( ( pInvG ` G ) ` x ) = ( ( pInvG ` G ) ` A ) ) |
| 66 |
65
|
fveq1d |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> ( ( ( pInvG ` G ) ` x ) ` C ) = ( ( ( pInvG ` G ) ` A ) ` C ) ) |
| 67 |
64 66
|
eqtr4d |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) = ( ( ( pInvG ` G ) ` x ) ` C ) ) |
| 68 |
45
|
ad3antrrr |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> p e. P ) |
| 69 |
43
|
ad3antrrr |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> ( ( ( pInvG ` G ) ` x ) ` C ) e. P ) |
| 70 |
1 2 3 4 11 54 68 13 69
|
mirinv |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> ( ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) = ( ( ( pInvG ` G ) ` x ) ` C ) <-> p = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) |
| 71 |
67 70
|
mpbid |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> p = ( ( ( pInvG ` G ) ` x ) ` C ) ) |
| 72 |
44
|
ad3antrrr |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> x e. P ) |
| 73 |
58
|
oveq1d |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> ( x I x ) = ( A I x ) ) |
| 74 |
57 73
|
eleqtrrd |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> t e. ( x I x ) ) |
| 75 |
1 2 3 54 72 56 74
|
axtgbtwnid |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> x = t ) |
| 76 |
75
|
eqcomd |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> t = x ) |
| 77 |
71 76
|
oveq12d |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> ( p L t ) = ( ( ( ( pInvG ` G ) ` x ) ` C ) L x ) ) |
| 78 |
34
|
ad2antrr |
|- ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> <" A x C "> e. ( raG ` G ) ) |
| 79 |
1 2 3 4 11 39 45 13 43 50
|
mircom |
|- ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` A ) ` C ) ) = ( ( ( pInvG ` G ) ` x ) ` C ) ) |
| 80 |
28
|
ad2antrr |
|- ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> x =/= C ) |
| 81 |
1 2 3 4 39 11 22 18 13 41 44 42 45 78 79 80
|
colperpexlem2 |
|- ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> A =/= p ) |
| 82 |
81
|
ad3antrrr |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> A =/= p ) |
| 83 |
62 82
|
eqnetrd |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> t =/= p ) |
| 84 |
1 3 4 54 56 68 83
|
tglinecom |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> ( t L p ) = ( p L t ) ) |
| 85 |
42
|
ad3antrrr |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> C e. P ) |
| 86 |
80
|
ad3antrrr |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> x =/= C ) |
| 87 |
54
|
adantr |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) /\ ( ( ( pInvG ` G ) ` x ) ` C ) = x ) -> G e. TarskiG ) |
| 88 |
72
|
adantr |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) /\ ( ( ( pInvG ` G ) ` x ) ` C ) = x ) -> x e. P ) |
| 89 |
85
|
adantr |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) /\ ( ( ( pInvG ` G ) ` x ) ` C ) = x ) -> C e. P ) |
| 90 |
1 2 3 4 11 87 88 18
|
mircinv |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) /\ ( ( ( pInvG ` G ) ` x ) ` C ) = x ) -> ( ( ( pInvG ` G ) ` x ) ` x ) = x ) |
| 91 |
|
simpr |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) /\ ( ( ( pInvG ` G ) ` x ) ` C ) = x ) -> ( ( ( pInvG ` G ) ` x ) ` C ) = x ) |
| 92 |
90 91
|
eqtr4d |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) /\ ( ( ( pInvG ` G ) ` x ) ` C ) = x ) -> ( ( ( pInvG ` G ) ` x ) ` x ) = ( ( ( pInvG ` G ) ` x ) ` C ) ) |
| 93 |
1 2 3 4 11 87 88 18 88 89 92
|
mireq |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) /\ ( ( ( pInvG ` G ) ` x ) ` C ) = x ) -> x = C ) |
| 94 |
86
|
adantr |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) /\ ( ( ( pInvG ` G ) ` x ) ` C ) = x ) -> x =/= C ) |
| 95 |
94
|
neneqd |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) /\ ( ( ( pInvG ` G ) ` x ) ` C ) = x ) -> -. x = C ) |
| 96 |
93 95
|
pm2.65da |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> -. ( ( ( pInvG ` G ) ` x ) ` C ) = x ) |
| 97 |
96
|
neqned |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> ( ( ( pInvG ` G ) ` x ) ` C ) =/= x ) |
| 98 |
47
|
ad3antrrr |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> x e. ( ( ( ( pInvG ` G ) ` x ) ` C ) I C ) ) |
| 99 |
1 3 4 54 72 85 69 86 98
|
btwnlng2 |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> ( ( ( pInvG ` G ) ` x ) ` C ) e. ( x L C ) ) |
| 100 |
1 3 4 54 72 85 86 69 97 99
|
tglineelsb2 |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> ( x L C ) = ( x L ( ( ( pInvG ` G ) ` x ) ` C ) ) ) |
| 101 |
28
|
necomd |
|- ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) -> C =/= x ) |
| 102 |
101
|
ad5antr |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> C =/= x ) |
| 103 |
1 3 4 54 85 72 102
|
tglinecom |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> ( C L x ) = ( x L C ) ) |
| 104 |
1 3 4 54 69 72 97
|
tglinecom |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> ( ( ( ( pInvG ` G ) ` x ) ` C ) L x ) = ( x L ( ( ( pInvG ` G ) ` x ) ` C ) ) ) |
| 105 |
100 103 104
|
3eqtr4d |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> ( C L x ) = ( ( ( ( pInvG ` G ) ` x ) ` C ) L x ) ) |
| 106 |
77 84 105
|
3eqtr4d |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> ( t L p ) = ( C L x ) ) |
| 107 |
63 106
|
eqtr3d |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> ( A L p ) = ( C L x ) ) |
| 108 |
31
|
ad5antr |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> ( C L x ) ( perpG ` G ) ( A L B ) ) |
| 109 |
107 108
|
eqbrtrd |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> ( A L p ) ( perpG ` G ) ( A L B ) ) |
| 110 |
39
|
ad3antrrr |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x =/= A ) -> G e. TarskiG ) |
| 111 |
41
|
ad3antrrr |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x =/= A ) -> A e. P ) |
| 112 |
45
|
ad3antrrr |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x =/= A ) -> p e. P ) |
| 113 |
81
|
ad3antrrr |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x =/= A ) -> A =/= p ) |
| 114 |
1 3 4 110 111 112 113
|
tgelrnln |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x =/= A ) -> ( A L p ) e. ran L ) |
| 115 |
15
|
ad5antr |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x =/= A ) -> ( A L B ) e. ran L ) |
| 116 |
1 3 4 110 111 112 113
|
tglinerflx1 |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x =/= A ) -> A e. ( A L p ) ) |
| 117 |
9
|
ad2antrr |
|- ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) -> A =/= B ) |
| 118 |
1 3 4 12 21 25 117
|
tglinerflx1 |
|- ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) -> A e. ( A L B ) ) |
| 119 |
118
|
ad5antr |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x =/= A ) -> A e. ( A L B ) ) |
| 120 |
116 119
|
elind |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x =/= A ) -> A e. ( ( A L p ) i^i ( A L B ) ) ) |
| 121 |
1 3 4 110 111 112 113
|
tglinerflx2 |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x =/= A ) -> p e. ( A L p ) ) |
| 122 |
16
|
ad5antr |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x =/= A ) -> x e. ( A L B ) ) |
| 123 |
113
|
necomd |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x =/= A ) -> p =/= A ) |
| 124 |
|
simpr |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x =/= A ) -> x =/= A ) |
| 125 |
44
|
ad3antrrr |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x =/= A ) -> x e. P ) |
| 126 |
1 2 3 4 39 11 22 18 13 41 44 42 45 78 79
|
colperpexlem1 |
|- ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> <" x A p "> e. ( raG ` G ) ) |
| 127 |
126
|
ad3antrrr |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x =/= A ) -> <" x A p "> e. ( raG ` G ) ) |
| 128 |
1 2 3 4 11 110 125 111 112 127
|
ragcom |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x =/= A ) -> <" p A x "> e. ( raG ` G ) ) |
| 129 |
1 2 3 4 110 114 115 120 121 122 123 124 128
|
ragperp |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x =/= A ) -> ( A L p ) ( perpG ` G ) ( A L B ) ) |
| 130 |
109 129
|
pm2.61dane |
|- ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) -> ( A L p ) ( perpG ` G ) ( A L B ) ) |
| 131 |
118
|
ad5antr |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> A e. ( A L B ) ) |
| 132 |
62 131
|
eqeltrd |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> t e. ( A L B ) ) |
| 133 |
132
|
orcd |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x = A ) -> ( t e. ( A L B ) \/ A = B ) ) |
| 134 |
25
|
ad5antr |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x =/= A ) -> B e. P ) |
| 135 |
117
|
ad5antr |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x =/= A ) -> A =/= B ) |
| 136 |
|
simpllr |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x =/= A ) -> t e. P ) |
| 137 |
124
|
necomd |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x =/= A ) -> A =/= x ) |
| 138 |
|
simplrr |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x =/= A ) -> t e. ( A I x ) ) |
| 139 |
1 3 4 110 111 125 136 137 138
|
btwnlng1 |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x =/= A ) -> t e. ( A L x ) ) |
| 140 |
1 3 4 110 111 134 135 125 124 122 136 139
|
tglineeltr |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x =/= A ) -> t e. ( A L B ) ) |
| 141 |
140
|
orcd |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) /\ x =/= A ) -> ( t e. ( A L B ) \/ A = B ) ) |
| 142 |
133 141
|
pm2.61dane |
|- ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) -> ( t e. ( A L B ) \/ A = B ) ) |
| 143 |
39
|
ad2antrr |
|- ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) -> G e. TarskiG ) |
| 144 |
45
|
ad2antrr |
|- ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) -> p e. P ) |
| 145 |
|
simplr |
|- ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) -> t e. P ) |
| 146 |
42
|
ad2antrr |
|- ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) -> C e. P ) |
| 147 |
|
simprl |
|- ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) -> t e. ( p I C ) ) |
| 148 |
1 2 3 143 144 145 146 147
|
tgbtwncom |
|- ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) -> t e. ( C I p ) ) |
| 149 |
130 142 148
|
jca32 |
|- ( ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) /\ ( t e. ( p I C ) /\ t e. ( A I x ) ) ) -> ( ( A L p ) ( perpG ` G ) ( A L B ) /\ ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( C I p ) ) ) ) |
| 150 |
149
|
ex |
|- ( ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ t e. P ) -> ( ( t e. ( p I C ) /\ t e. ( A I x ) ) -> ( ( A L p ) ( perpG ` G ) ( A L B ) /\ ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( C I p ) ) ) ) ) |
| 151 |
150
|
reximdva |
|- ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> ( E. t e. P ( t e. ( p I C ) /\ t e. ( A I x ) ) -> E. t e. P ( ( A L p ) ( perpG ` G ) ( A L B ) /\ ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( C I p ) ) ) ) ) |
| 152 |
53 151
|
mpd |
|- ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> E. t e. P ( ( A L p ) ( perpG ` G ) ( A L B ) /\ ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( C I p ) ) ) ) |
| 153 |
|
r19.42v |
|- ( E. t e. P ( ( A L p ) ( perpG ` G ) ( A L B ) /\ ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( C I p ) ) ) <-> ( ( A L p ) ( perpG ` G ) ( A L B ) /\ E. t e. P ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( C I p ) ) ) ) |
| 154 |
152 153
|
sylib |
|- ( ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> ( ( A L p ) ( perpG ` G ) ( A L B ) /\ E. t e. P ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( C I p ) ) ) ) |
| 155 |
154
|
ex |
|- ( ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) -> ( ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) -> ( ( A L p ) ( perpG ` G ) ( A L B ) /\ E. t e. P ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( C I p ) ) ) ) ) |
| 156 |
155
|
reximdva |
|- ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) -> ( E. p e. P ( ( ( pInvG ` G ) ` A ) ` C ) = ( ( ( pInvG ` G ) ` p ) ` ( ( ( pInvG ` G ) ` x ) ` C ) ) -> E. p e. P ( ( A L p ) ( perpG ` G ) ( A L B ) /\ E. t e. P ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( C I p ) ) ) ) ) |
| 157 |
38 156
|
mpd |
|- ( ( ( ph /\ x e. ( A L B ) ) /\ ( C L x ) ( perpG ` G ) ( A L B ) ) -> E. p e. P ( ( A L p ) ( perpG ` G ) ( A L B ) /\ E. t e. P ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( C I p ) ) ) ) |
| 158 |
1 2 3 4 5 14 8 10
|
footex |
|- ( ph -> E. x e. ( A L B ) ( C L x ) ( perpG ` G ) ( A L B ) ) |
| 159 |
157 158
|
r19.29a |
|- ( ph -> E. p e. P ( ( A L p ) ( perpG ` G ) ( A L B ) /\ E. t e. P ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( C I p ) ) ) ) |