| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mirval.p |  |-  P = ( Base ` G ) | 
						
							| 2 |  | mirval.d |  |-  .- = ( dist ` G ) | 
						
							| 3 |  | mirval.i |  |-  I = ( Itv ` G ) | 
						
							| 4 |  | mirval.l |  |-  L = ( LineG ` G ) | 
						
							| 5 |  | mirval.s |  |-  S = ( pInvG ` G ) | 
						
							| 6 |  | mirval.g |  |-  ( ph -> G e. TarskiG ) | 
						
							| 7 |  | mirval.a |  |-  ( ph -> A e. P ) | 
						
							| 8 |  | mirfv.m |  |-  M = ( S ` A ) | 
						
							| 9 |  | mirmir.b |  |-  ( ph -> B e. P ) | 
						
							| 10 |  | mireq.c |  |-  ( ph -> C e. P ) | 
						
							| 11 |  | mireq.d |  |-  ( ph -> ( M ` B ) = ( M ` C ) ) | 
						
							| 12 | 1 2 3 4 5 6 7 8 10 | mircl |  |-  ( ph -> ( M ` C ) e. P ) | 
						
							| 13 | 1 2 3 4 5 6 7 8 9 | mirfv |  |-  ( ph -> ( M ` B ) = ( iota_ z e. P ( ( A .- z ) = ( A .- B ) /\ A e. ( z I B ) ) ) ) | 
						
							| 14 | 13 11 | eqtr3d |  |-  ( ph -> ( iota_ z e. P ( ( A .- z ) = ( A .- B ) /\ A e. ( z I B ) ) ) = ( M ` C ) ) | 
						
							| 15 | 1 2 3 6 9 7 | mirreu3 |  |-  ( ph -> E! z e. P ( ( A .- z ) = ( A .- B ) /\ A e. ( z I B ) ) ) | 
						
							| 16 |  | oveq2 |  |-  ( z = ( M ` C ) -> ( A .- z ) = ( A .- ( M ` C ) ) ) | 
						
							| 17 | 16 | eqeq1d |  |-  ( z = ( M ` C ) -> ( ( A .- z ) = ( A .- B ) <-> ( A .- ( M ` C ) ) = ( A .- B ) ) ) | 
						
							| 18 |  | oveq1 |  |-  ( z = ( M ` C ) -> ( z I B ) = ( ( M ` C ) I B ) ) | 
						
							| 19 | 18 | eleq2d |  |-  ( z = ( M ` C ) -> ( A e. ( z I B ) <-> A e. ( ( M ` C ) I B ) ) ) | 
						
							| 20 | 17 19 | anbi12d |  |-  ( z = ( M ` C ) -> ( ( ( A .- z ) = ( A .- B ) /\ A e. ( z I B ) ) <-> ( ( A .- ( M ` C ) ) = ( A .- B ) /\ A e. ( ( M ` C ) I B ) ) ) ) | 
						
							| 21 | 20 | riota2 |  |-  ( ( ( M ` C ) e. P /\ E! z e. P ( ( A .- z ) = ( A .- B ) /\ A e. ( z I B ) ) ) -> ( ( ( A .- ( M ` C ) ) = ( A .- B ) /\ A e. ( ( M ` C ) I B ) ) <-> ( iota_ z e. P ( ( A .- z ) = ( A .- B ) /\ A e. ( z I B ) ) ) = ( M ` C ) ) ) | 
						
							| 22 | 12 15 21 | syl2anc |  |-  ( ph -> ( ( ( A .- ( M ` C ) ) = ( A .- B ) /\ A e. ( ( M ` C ) I B ) ) <-> ( iota_ z e. P ( ( A .- z ) = ( A .- B ) /\ A e. ( z I B ) ) ) = ( M ` C ) ) ) | 
						
							| 23 | 14 22 | mpbird |  |-  ( ph -> ( ( A .- ( M ` C ) ) = ( A .- B ) /\ A e. ( ( M ` C ) I B ) ) ) | 
						
							| 24 | 23 | simpld |  |-  ( ph -> ( A .- ( M ` C ) ) = ( A .- B ) ) | 
						
							| 25 | 24 | eqcomd |  |-  ( ph -> ( A .- B ) = ( A .- ( M ` C ) ) ) | 
						
							| 26 | 23 | simprd |  |-  ( ph -> A e. ( ( M ` C ) I B ) ) | 
						
							| 27 | 1 2 3 6 12 7 9 26 | tgbtwncom |  |-  ( ph -> A e. ( B I ( M ` C ) ) ) | 
						
							| 28 | 1 2 3 4 5 6 7 8 12 9 25 27 | ismir |  |-  ( ph -> B = ( M ` ( M ` C ) ) ) | 
						
							| 29 | 1 2 3 4 5 6 7 8 10 | mirmir |  |-  ( ph -> ( M ` ( M ` C ) ) = C ) | 
						
							| 30 | 28 29 | eqtrd |  |-  ( ph -> B = C ) |