Metamath Proof Explorer


Theorem mireq

Description: Equality deduction for point inversion. Theorem 7.9 of Schwabhauser p. 50. (Contributed by Thierry Arnoux, 30-May-2019)

Ref Expression
Hypotheses mirval.p P=BaseG
mirval.d -˙=distG
mirval.i I=ItvG
mirval.l L=Line𝒢G
mirval.s S=pInv𝒢G
mirval.g φG𝒢Tarski
mirval.a φAP
mirfv.m M=SA
mirmir.b φBP
mireq.c φCP
mireq.d φMB=MC
Assertion mireq φB=C

Proof

Step Hyp Ref Expression
1 mirval.p P=BaseG
2 mirval.d -˙=distG
3 mirval.i I=ItvG
4 mirval.l L=Line𝒢G
5 mirval.s S=pInv𝒢G
6 mirval.g φG𝒢Tarski
7 mirval.a φAP
8 mirfv.m M=SA
9 mirmir.b φBP
10 mireq.c φCP
11 mireq.d φMB=MC
12 1 2 3 4 5 6 7 8 10 mircl φMCP
13 1 2 3 4 5 6 7 8 9 mirfv φMB=ιzP|A-˙z=A-˙BAzIB
14 13 11 eqtr3d φιzP|A-˙z=A-˙BAzIB=MC
15 1 2 3 6 9 7 mirreu3 φ∃!zPA-˙z=A-˙BAzIB
16 oveq2 z=MCA-˙z=A-˙MC
17 16 eqeq1d z=MCA-˙z=A-˙BA-˙MC=A-˙B
18 oveq1 z=MCzIB=MCIB
19 18 eleq2d z=MCAzIBAMCIB
20 17 19 anbi12d z=MCA-˙z=A-˙BAzIBA-˙MC=A-˙BAMCIB
21 20 riota2 MCP∃!zPA-˙z=A-˙BAzIBA-˙MC=A-˙BAMCIBιzP|A-˙z=A-˙BAzIB=MC
22 12 15 21 syl2anc φA-˙MC=A-˙BAMCIBιzP|A-˙z=A-˙BAzIB=MC
23 14 22 mpbird φA-˙MC=A-˙BAMCIB
24 23 simpld φA-˙MC=A-˙B
25 24 eqcomd φA-˙B=A-˙MC
26 23 simprd φAMCIB
27 1 2 3 6 12 7 9 26 tgbtwncom φABIMC
28 1 2 3 4 5 6 7 8 12 9 25 27 ismir φB=MMC
29 1 2 3 4 5 6 7 8 10 mirmir φMMC=C
30 28 29 eqtrd φB=C