Metamath Proof Explorer


Theorem mirreu3

Description: Existential uniqueness of the mirror point. Theorem 7.8 of Schwabhauser p. 49. (Contributed by Thierry Arnoux, 30-May-2019)

Ref Expression
Hypotheses mirreu.p P = Base G
mirreu.d - ˙ = dist G
mirreu.i I = Itv G
mirreu.g φ G 𝒢 Tarski
mirreu.a φ A P
mirreu.m φ M P
Assertion mirreu3 φ ∃! b P M - ˙ b = M - ˙ A M b I A

Proof

Step Hyp Ref Expression
1 mirreu.p P = Base G
2 mirreu.d - ˙ = dist G
3 mirreu.i I = Itv G
4 mirreu.g φ G 𝒢 Tarski
5 mirreu.a φ A P
6 mirreu.m φ M P
7 5 adantr φ A = M A P
8 eqidd φ A = M M - ˙ A = M - ˙ A
9 simpr φ A = M A = M
10 4 adantr φ A = M G 𝒢 Tarski
11 1 2 3 10 7 7 tgbtwntriv2 φ A = M A A I A
12 9 11 eqeltrrd φ A = M M A I A
13 oveq2 b = A M - ˙ b = M - ˙ A
14 13 eqeq1d b = A M - ˙ b = M - ˙ A M - ˙ A = M - ˙ A
15 oveq1 b = A b I A = A I A
16 15 eleq2d b = A M b I A M A I A
17 14 16 anbi12d b = A M - ˙ b = M - ˙ A M b I A M - ˙ A = M - ˙ A M A I A
18 17 rspcev A P M - ˙ A = M - ˙ A M A I A b P M - ˙ b = M - ˙ A M b I A
19 7 8 12 18 syl12anc φ A = M b P M - ˙ b = M - ˙ A M b I A
20 4 ad3antrrr φ A = M b P c P M - ˙ b = M - ˙ A M b I A M - ˙ c = M - ˙ A M c I A G 𝒢 Tarski
21 6 ad3antrrr φ A = M b P c P M - ˙ b = M - ˙ A M b I A M - ˙ c = M - ˙ A M c I A M P
22 simplrl φ A = M b P c P M - ˙ b = M - ˙ A M b I A M - ˙ c = M - ˙ A M c I A b P
23 simprll φ A = M b P c P M - ˙ b = M - ˙ A M b I A M - ˙ c = M - ˙ A M c I A M - ˙ b = M - ˙ A
24 simpllr φ A = M b P c P M - ˙ b = M - ˙ A M b I A M - ˙ c = M - ˙ A M c I A A = M
25 24 oveq2d φ A = M b P c P M - ˙ b = M - ˙ A M b I A M - ˙ c = M - ˙ A M c I A M - ˙ A = M - ˙ M
26 23 25 eqtrd φ A = M b P c P M - ˙ b = M - ˙ A M b I A M - ˙ c = M - ˙ A M c I A M - ˙ b = M - ˙ M
27 1 2 3 20 21 22 21 26 axtgcgrid φ A = M b P c P M - ˙ b = M - ˙ A M b I A M - ˙ c = M - ˙ A M c I A M = b
28 simplrr φ A = M b P c P M - ˙ b = M - ˙ A M b I A M - ˙ c = M - ˙ A M c I A c P
29 simprrl φ A = M b P c P M - ˙ b = M - ˙ A M b I A M - ˙ c = M - ˙ A M c I A M - ˙ c = M - ˙ A
30 29 25 eqtrd φ A = M b P c P M - ˙ b = M - ˙ A M b I A M - ˙ c = M - ˙ A M c I A M - ˙ c = M - ˙ M
31 1 2 3 20 21 28 21 30 axtgcgrid φ A = M b P c P M - ˙ b = M - ˙ A M b I A M - ˙ c = M - ˙ A M c I A M = c
32 27 31 eqtr3d φ A = M b P c P M - ˙ b = M - ˙ A M b I A M - ˙ c = M - ˙ A M c I A b = c
33 32 ex φ A = M b P c P M - ˙ b = M - ˙ A M b I A M - ˙ c = M - ˙ A M c I A b = c
34 33 ralrimivva φ A = M b P c P M - ˙ b = M - ˙ A M b I A M - ˙ c = M - ˙ A M c I A b = c
35 19 34 jca φ A = M b P M - ˙ b = M - ˙ A M b I A b P c P M - ˙ b = M - ˙ A M b I A M - ˙ c = M - ˙ A M c I A b = c
36 4 adantr φ A M G 𝒢 Tarski
37 5 adantr φ A M A P
38 6 adantr φ A M M P
39 1 2 3 36 37 38 38 37 axtgsegcon φ A M b P M A I b M - ˙ b = M - ˙ A
40 ancom M A I b M - ˙ b = M - ˙ A M - ˙ b = M - ˙ A M A I b
41 4 adantr φ b P G 𝒢 Tarski
42 5 adantr φ b P A P
43 6 adantr φ b P M P
44 simpr φ b P b P
45 1 2 3 41 42 43 44 tgbtwncomb φ b P M A I b M b I A
46 45 anbi2d φ b P M - ˙ b = M - ˙ A M A I b M - ˙ b = M - ˙ A M b I A
47 40 46 syl5bb φ b P M A I b M - ˙ b = M - ˙ A M - ˙ b = M - ˙ A M b I A
48 47 rexbidva φ b P M A I b M - ˙ b = M - ˙ A b P M - ˙ b = M - ˙ A M b I A
49 48 adantr φ A M b P M A I b M - ˙ b = M - ˙ A b P M - ˙ b = M - ˙ A M b I A
50 39 49 mpbid φ A M b P M - ˙ b = M - ˙ A M b I A
51 4 ad3antrrr φ A M b P c P M - ˙ b = M - ˙ A M b I A M - ˙ c = M - ˙ A M c I A G 𝒢 Tarski
52 6 ad3antrrr φ A M b P c P M - ˙ b = M - ˙ A M b I A M - ˙ c = M - ˙ A M c I A M P
53 5 ad3antrrr φ A M b P c P M - ˙ b = M - ˙ A M b I A M - ˙ c = M - ˙ A M c I A A P
54 simplrl φ A M b P c P M - ˙ b = M - ˙ A M b I A M - ˙ c = M - ˙ A M c I A b P
55 simplrr φ A M b P c P M - ˙ b = M - ˙ A M b I A M - ˙ c = M - ˙ A M c I A c P
56 simpllr φ A M b P c P M - ˙ b = M - ˙ A M b I A M - ˙ c = M - ˙ A M c I A A M
57 simprlr φ A M b P c P M - ˙ b = M - ˙ A M b I A M - ˙ c = M - ˙ A M c I A M b I A
58 1 2 3 51 54 52 53 57 tgbtwncom φ A M b P c P M - ˙ b = M - ˙ A M b I A M - ˙ c = M - ˙ A M c I A M A I b
59 simprrr φ A M b P c P M - ˙ b = M - ˙ A M b I A M - ˙ c = M - ˙ A M c I A M c I A
60 1 2 3 51 55 52 53 59 tgbtwncom φ A M b P c P M - ˙ b = M - ˙ A M b I A M - ˙ c = M - ˙ A M c I A M A I c
61 simprll φ A M b P c P M - ˙ b = M - ˙ A M b I A M - ˙ c = M - ˙ A M c I A M - ˙ b = M - ˙ A
62 simprrl φ A M b P c P M - ˙ b = M - ˙ A M b I A M - ˙ c = M - ˙ A M c I A M - ˙ c = M - ˙ A
63 1 2 3 51 52 52 53 53 54 55 56 58 60 61 62 tgsegconeq φ A M b P c P M - ˙ b = M - ˙ A M b I A M - ˙ c = M - ˙ A M c I A b = c
64 63 ex φ A M b P c P M - ˙ b = M - ˙ A M b I A M - ˙ c = M - ˙ A M c I A b = c
65 64 ralrimivva φ A M b P c P M - ˙ b = M - ˙ A M b I A M - ˙ c = M - ˙ A M c I A b = c
66 50 65 jca φ A M b P M - ˙ b = M - ˙ A M b I A b P c P M - ˙ b = M - ˙ A M b I A M - ˙ c = M - ˙ A M c I A b = c
67 35 66 pm2.61dane φ b P M - ˙ b = M - ˙ A M b I A b P c P M - ˙ b = M - ˙ A M b I A M - ˙ c = M - ˙ A M c I A b = c
68 oveq2 b = c M - ˙ b = M - ˙ c
69 68 eqeq1d b = c M - ˙ b = M - ˙ A M - ˙ c = M - ˙ A
70 oveq1 b = c b I A = c I A
71 70 eleq2d b = c M b I A M c I A
72 69 71 anbi12d b = c M - ˙ b = M - ˙ A M b I A M - ˙ c = M - ˙ A M c I A
73 72 reu4 ∃! b P M - ˙ b = M - ˙ A M b I A b P M - ˙ b = M - ˙ A M b I A b P c P M - ˙ b = M - ˙ A M b I A M - ˙ c = M - ˙ A M c I A b = c
74 67 73 sylibr φ ∃! b P M - ˙ b = M - ˙ A M b I A