Step |
Hyp |
Ref |
Expression |
1 |
|
mirreu.p |
|
2 |
|
mirreu.d |
|
3 |
|
mirreu.i |
|
4 |
|
mirreu.g |
|
5 |
|
mirreu.a |
|
6 |
|
mirreu.m |
|
7 |
5
|
adantr |
|
8 |
|
eqidd |
|
9 |
|
simpr |
|
10 |
4
|
adantr |
|
11 |
1 2 3 10 7 7
|
tgbtwntriv2 |
|
12 |
9 11
|
eqeltrrd |
|
13 |
|
oveq2 |
|
14 |
13
|
eqeq1d |
|
15 |
|
oveq1 |
|
16 |
15
|
eleq2d |
|
17 |
14 16
|
anbi12d |
|
18 |
17
|
rspcev |
|
19 |
7 8 12 18
|
syl12anc |
|
20 |
4
|
ad3antrrr |
|
21 |
6
|
ad3antrrr |
|
22 |
|
simplrl |
|
23 |
|
simprll |
|
24 |
|
simpllr |
|
25 |
24
|
oveq2d |
|
26 |
23 25
|
eqtrd |
|
27 |
1 2 3 20 21 22 21 26
|
axtgcgrid |
|
28 |
|
simplrr |
|
29 |
|
simprrl |
|
30 |
29 25
|
eqtrd |
|
31 |
1 2 3 20 21 28 21 30
|
axtgcgrid |
|
32 |
27 31
|
eqtr3d |
|
33 |
32
|
ex |
|
34 |
33
|
ralrimivva |
|
35 |
19 34
|
jca |
|
36 |
4
|
adantr |
|
37 |
5
|
adantr |
|
38 |
6
|
adantr |
|
39 |
1 2 3 36 37 38 38 37
|
axtgsegcon |
|
40 |
|
ancom |
|
41 |
4
|
adantr |
|
42 |
5
|
adantr |
|
43 |
6
|
adantr |
|
44 |
|
simpr |
|
45 |
1 2 3 41 42 43 44
|
tgbtwncomb |
|
46 |
45
|
anbi2d |
|
47 |
40 46
|
syl5bb |
|
48 |
47
|
rexbidva |
|
49 |
48
|
adantr |
|
50 |
39 49
|
mpbid |
|
51 |
4
|
ad3antrrr |
|
52 |
6
|
ad3antrrr |
|
53 |
5
|
ad3antrrr |
|
54 |
|
simplrl |
|
55 |
|
simplrr |
|
56 |
|
simpllr |
|
57 |
|
simprlr |
|
58 |
1 2 3 51 54 52 53 57
|
tgbtwncom |
|
59 |
|
simprrr |
|
60 |
1 2 3 51 55 52 53 59
|
tgbtwncom |
|
61 |
|
simprll |
|
62 |
|
simprrl |
|
63 |
1 2 3 51 52 52 53 53 54 55 56 58 60 61 62
|
tgsegconeq |
|
64 |
63
|
ex |
|
65 |
64
|
ralrimivva |
|
66 |
50 65
|
jca |
|
67 |
35 66
|
pm2.61dane |
|
68 |
|
oveq2 |
|
69 |
68
|
eqeq1d |
|
70 |
|
oveq1 |
|
71 |
70
|
eleq2d |
|
72 |
69 71
|
anbi12d |
|
73 |
72
|
reu4 |
|
74 |
67 73
|
sylibr |
|