Metamath Proof Explorer


Theorem tgsegconeq

Description: Two points that satisfy the conclusion of axtgsegcon are identical. Uniqueness portion of Theorem 2.12 of Schwabhauser p. 29. (Contributed by Thierry Arnoux, 23-Mar-2019)

Ref Expression
Hypotheses tkgeom.p P = Base G
tkgeom.d - ˙ = dist G
tkgeom.i I = Itv G
tkgeom.g φ G 𝒢 Tarski
tgcgrextend.a φ A P
tgcgrextend.b φ B P
tgcgrextend.c φ C P
tgcgrextend.d φ D P
tgcgrextend.e φ E P
tgcgrextend.f φ F P
tgsegconeq.1 φ D A
tgsegconeq.2 φ A D I E
tgsegconeq.3 φ A D I F
tgsegconeq.4 φ A - ˙ E = B - ˙ C
tgsegconeq.5 φ A - ˙ F = B - ˙ C
Assertion tgsegconeq φ E = F

Proof

Step Hyp Ref Expression
1 tkgeom.p P = Base G
2 tkgeom.d - ˙ = dist G
3 tkgeom.i I = Itv G
4 tkgeom.g φ G 𝒢 Tarski
5 tgcgrextend.a φ A P
6 tgcgrextend.b φ B P
7 tgcgrextend.c φ C P
8 tgcgrextend.d φ D P
9 tgcgrextend.e φ E P
10 tgcgrextend.f φ F P
11 tgsegconeq.1 φ D A
12 tgsegconeq.2 φ A D I E
13 tgsegconeq.3 φ A D I F
14 tgsegconeq.4 φ A - ˙ E = B - ˙ C
15 tgsegconeq.5 φ A - ˙ F = B - ˙ C
16 eqidd φ D - ˙ A = D - ˙ A
17 eqidd φ A - ˙ E = A - ˙ E
18 14 15 eqtr4d φ A - ˙ E = A - ˙ F
19 1 2 3 4 8 5 9 8 5 10 12 13 16 18 tgcgrextend φ D - ˙ E = D - ˙ F
20 1 2 3 4 8 5 9 8 5 9 9 10 11 12 12 16 17 19 18 axtg5seg φ E - ˙ E = E - ˙ F
21 20 eqcomd φ E - ˙ F = E - ˙ E
22 1 2 3 4 9 10 9 21 axtgcgrid φ E = F