Metamath Proof Explorer


Theorem mirval

Description: Value of the point inversion function S . Definition 7.5 of Schwabhauser p. 49. (Contributed by Thierry Arnoux, 30-May-2019)

Ref Expression
Hypotheses mirval.p P=BaseG
mirval.d -˙=distG
mirval.i I=ItvG
mirval.l L=Line𝒢G
mirval.s S=pInv𝒢G
mirval.g φG𝒢Tarski
mirval.a φAP
Assertion mirval φSA=yPιzP|A-˙z=A-˙yAzIy

Proof

Step Hyp Ref Expression
1 mirval.p P=BaseG
2 mirval.d -˙=distG
3 mirval.i I=ItvG
4 mirval.l L=Line𝒢G
5 mirval.s S=pInv𝒢G
6 mirval.g φG𝒢Tarski
7 mirval.a φAP
8 df-mir pInv𝒢=gVxBasegyBasegιzBaseg|xdistgz=xdistgyxzItvgy
9 fveq2 g=GBaseg=BaseG
10 9 1 eqtr4di g=GBaseg=P
11 fveq2 g=Gdistg=distG
12 11 2 eqtr4di g=Gdistg=-˙
13 12 oveqd g=Gxdistgz=x-˙z
14 12 oveqd g=Gxdistgy=x-˙y
15 13 14 eqeq12d g=Gxdistgz=xdistgyx-˙z=x-˙y
16 fveq2 g=GItvg=ItvG
17 16 3 eqtr4di g=GItvg=I
18 17 oveqd g=GzItvgy=zIy
19 18 eleq2d g=GxzItvgyxzIy
20 15 19 anbi12d g=Gxdistgz=xdistgyxzItvgyx-˙z=x-˙yxzIy
21 10 20 riotaeqbidv g=GιzBaseg|xdistgz=xdistgyxzItvgy=ιzP|x-˙z=x-˙yxzIy
22 10 21 mpteq12dv g=GyBasegιzBaseg|xdistgz=xdistgyxzItvgy=yPιzP|x-˙z=x-˙yxzIy
23 10 22 mpteq12dv g=GxBasegyBasegιzBaseg|xdistgz=xdistgyxzItvgy=xPyPιzP|x-˙z=x-˙yxzIy
24 6 elexd φGV
25 1 fvexi PV
26 25 mptex xPyPιzP|x-˙z=x-˙yxzIyV
27 26 a1i φxPyPιzP|x-˙z=x-˙yxzIyV
28 8 23 24 27 fvmptd3 φpInv𝒢G=xPyPιzP|x-˙z=x-˙yxzIy
29 5 28 eqtrid φS=xPyPιzP|x-˙z=x-˙yxzIy
30 simpll x=AyPzPx=A
31 30 oveq1d x=AyPzPx-˙z=A-˙z
32 30 oveq1d x=AyPzPx-˙y=A-˙y
33 31 32 eqeq12d x=AyPzPx-˙z=x-˙yA-˙z=A-˙y
34 30 eleq1d x=AyPzPxzIyAzIy
35 33 34 anbi12d x=AyPzPx-˙z=x-˙yxzIyA-˙z=A-˙yAzIy
36 35 riotabidva x=AyPιzP|x-˙z=x-˙yxzIy=ιzP|A-˙z=A-˙yAzIy
37 36 mpteq2dva x=AyPιzP|x-˙z=x-˙yxzIy=yPιzP|A-˙z=A-˙yAzIy
38 37 adantl φx=AyPιzP|x-˙z=x-˙yxzIy=yPιzP|A-˙z=A-˙yAzIy
39 25 mptex yPιzP|A-˙z=A-˙yAzIyV
40 39 a1i φyPιzP|A-˙z=A-˙yAzIyV
41 29 38 7 40 fvmptd φSA=yPιzP|A-˙z=A-˙yAzIy