Metamath Proof Explorer


Definition df-mir

Description: Define the point inversion ("mirror") function. Definition 7.5 of Schwabhauser p. 49. See mirval and ismir . (Contributed by Thierry Arnoux, 30-May-2019)

Ref Expression
Assertion df-mir pInv𝒢=gVmBasegaBasegιbBaseg|mdistgb=mdistgambItvga

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmir classpInv𝒢
1 vg setvarg
2 cvv classV
3 vm setvarm
4 cbs classBase
5 1 cv setvarg
6 5 4 cfv classBaseg
7 va setvara
8 vb setvarb
9 3 cv setvarm
10 cds classdist
11 5 10 cfv classdistg
12 8 cv setvarb
13 9 12 11 co classmdistgb
14 7 cv setvara
15 9 14 11 co classmdistga
16 13 15 wceq wffmdistgb=mdistga
17 citv classItv
18 5 17 cfv classItvg
19 12 14 18 co classbItvga
20 9 19 wcel wffmbItvga
21 16 20 wa wffmdistgb=mdistgambItvga
22 21 8 6 crio classιbBaseg|mdistgb=mdistgambItvga
23 7 6 22 cmpt classaBasegιbBaseg|mdistgb=mdistgambItvga
24 3 6 23 cmpt classmBasegaBasegιbBaseg|mdistgb=mdistgambItvga
25 1 2 24 cmpt classgVmBasegaBasegιbBaseg|mdistgb=mdistgambItvga
26 0 25 wceq wffpInv𝒢=gVmBasegaBasegιbBaseg|mdistgb=mdistgambItvga