Step |
Hyp |
Ref |
Expression |
1 |
|
mirval.p |
|- P = ( Base ` G ) |
2 |
|
mirval.d |
|- .- = ( dist ` G ) |
3 |
|
mirval.i |
|- I = ( Itv ` G ) |
4 |
|
mirval.l |
|- L = ( LineG ` G ) |
5 |
|
mirval.s |
|- S = ( pInvG ` G ) |
6 |
|
mirval.g |
|- ( ph -> G e. TarskiG ) |
7 |
|
mirval.a |
|- ( ph -> A e. P ) |
8 |
|
mirfv.m |
|- M = ( S ` A ) |
9 |
|
mirfv.b |
|- ( ph -> B e. P ) |
10 |
1 2 3 4 5 6 7
|
mirval |
|- ( ph -> ( S ` A ) = ( y e. P |-> ( iota_ z e. P ( ( A .- z ) = ( A .- y ) /\ A e. ( z I y ) ) ) ) ) |
11 |
8 10
|
eqtrid |
|- ( ph -> M = ( y e. P |-> ( iota_ z e. P ( ( A .- z ) = ( A .- y ) /\ A e. ( z I y ) ) ) ) ) |
12 |
|
simplr |
|- ( ( ( ph /\ y = B ) /\ z e. P ) -> y = B ) |
13 |
12
|
oveq2d |
|- ( ( ( ph /\ y = B ) /\ z e. P ) -> ( A .- y ) = ( A .- B ) ) |
14 |
13
|
eqeq2d |
|- ( ( ( ph /\ y = B ) /\ z e. P ) -> ( ( A .- z ) = ( A .- y ) <-> ( A .- z ) = ( A .- B ) ) ) |
15 |
12
|
oveq2d |
|- ( ( ( ph /\ y = B ) /\ z e. P ) -> ( z I y ) = ( z I B ) ) |
16 |
15
|
eleq2d |
|- ( ( ( ph /\ y = B ) /\ z e. P ) -> ( A e. ( z I y ) <-> A e. ( z I B ) ) ) |
17 |
14 16
|
anbi12d |
|- ( ( ( ph /\ y = B ) /\ z e. P ) -> ( ( ( A .- z ) = ( A .- y ) /\ A e. ( z I y ) ) <-> ( ( A .- z ) = ( A .- B ) /\ A e. ( z I B ) ) ) ) |
18 |
17
|
riotabidva |
|- ( ( ph /\ y = B ) -> ( iota_ z e. P ( ( A .- z ) = ( A .- y ) /\ A e. ( z I y ) ) ) = ( iota_ z e. P ( ( A .- z ) = ( A .- B ) /\ A e. ( z I B ) ) ) ) |
19 |
|
riotaex |
|- ( iota_ z e. P ( ( A .- z ) = ( A .- B ) /\ A e. ( z I B ) ) ) e. _V |
20 |
19
|
a1i |
|- ( ph -> ( iota_ z e. P ( ( A .- z ) = ( A .- B ) /\ A e. ( z I B ) ) ) e. _V ) |
21 |
11 18 9 20
|
fvmptd |
|- ( ph -> ( M ` B ) = ( iota_ z e. P ( ( A .- z ) = ( A .- B ) /\ A e. ( z I B ) ) ) ) |